Phase Transition in Dust Clusters with Different Charging Processes

Random charging processes effects on ground‐state configurations and phase transition of a finite system have been investigated in terms of Hamiltonian system. The particles interact through a screened Yukawa potential and are confined by a two‐dimensional parabolic potential. Numerical simulation was performed at low temperature for charging processes by particles collection and by photoemission. Results show that the charge fluctuation changes significantly the ground‐state configurations only in the case of the photoemission charging process and give rise to a change on the melting characteristics. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  G. Kalman Strongly Coupled Coulomb Systems , 2013 .

[2]  F. Peeters,et al.  Binary dusty plasma Coulomb balls. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  G. Joyce,et al.  Complex plasmas in external fields: the role of non-hamiltonian interactions. , 2011, Physical review letters.

[4]  S. Volkov,et al.  Freezing and melting of 3D complex plasma structures under microgravity conditions driven by neutral gas pressure manipulation. , 2011, Physical review letters.

[5]  M. Bonitz,et al.  Complex plasmas: a laboratory for strong correlations , 2010 .

[6]  M. Djebli,et al.  Modeling the interaction between two dimensional strongly coupled confined dust clusters , 2010 .

[7]  T. E. Sheridan,et al.  Dimensional phase transition in small Yukawa clusters. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Francis F. Chen,et al.  Langmuir probes in RF plasma: surprising validity of OML theory , 2009 .

[9]  S. Vladimirov,et al.  Dust Particle Alignments in a Plasma Sheath , 2009 .

[10]  M. Djebli,et al.  Effect of charge fluctuation on two dimensional dust clusters in elliptical confinement , 2009 .

[11]  A. Piel,et al.  Heat conduction in 2D strongly coupled dusty plasmas , 2008, 0810.1623.

[12]  J. Stokes,et al.  Dynamics of two particles in a plasma sheath. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  F. Peeters,et al.  Random charge fluctuation effect on strongly correlated dust particles confined in two dimensions , 2008 .

[14]  G. Morfill,et al.  Electric potential around an absorbing body in plasmas: effect of ion-neutral collisions. , 2008, Physical review letters.

[15]  J. Goree,et al.  Heat transport in a two-dimensional complex (dusty) plasma at melting conditions. , 2007, Physical review letters.

[16]  Y. Lozovik,et al.  Melting of trapped few-particle systems. , 2007, Physical review letters.

[17]  V. Lubchenko A universal criterion of melting. , 2006, The journal of physical chemistry. B.

[18]  G. Morfill,et al.  Charging properties of a dust grain in collisional plasmas , 2006 .

[19]  Gregor E. Morfill,et al.  Complex (dusty) plasmas: current status, open issues, perspectives , 2005 .

[20]  G. Morfill,et al.  Generalized kinetic theory of ensembles with variable charges , 2005 .

[21]  A. Melzer Collective Effects in Dusty Plasmas , 2005 .

[22]  G. Morfill,et al.  Kinetics of ensembles with variable charges. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  M. Karplus,et al.  The distance fluctuation criterion for melting: Comparison of square-well and Morse potential models for clusters and homopolymers , 2002 .

[24]  B. James,et al.  Positively charged particles in dusty plasmas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Y. Lozovik,et al.  Mesoscopic Two-Dimensional Electron Crystals in Single and Double Layers , 2001, cond-mat/0102279.

[26]  V. Molotkov,et al.  Formation of liquidlike and crystalline structures in dusty plasmas , 2001 .

[27]  S. Khrapak,et al.  Charge-fluctuation-induced heating of dust particles in a plasma. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  O. Petrov,et al.  Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas , 1999 .

[29]  O. Petrov,et al.  Dynamical properties of random charge fluctuations in a dusty plasma with different charging mechanisms. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  D. Sheehan,et al.  Positively charged dust crystals induced by radiative heating , 1999 .

[31]  L. I. Næsheim,et al.  First detection of charged dust particles in the Earth's mesosphere , 1996 .

[32]  T. Matsoukas,et al.  Stochastic charge fluctuations in dusty plasmas , 1996 .

[33]  Melzer,et al.  Experimental investigation of the melting transition of the plasma crystal. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Peeters,et al.  Spectral properties of classical two-dimensional clusters. , 1995, Physical review. B, Condensed matter.

[35]  J. Goree Charging of particles in a plasma , 1994 .

[36]  J. Goree,et al.  Fluctuations of the charge on a dust grain in a plasma , 1994 .

[37]  Peeters,et al.  Ordering and phase transitions of charged particles in a classical finite two-dimensional system. , 1994, Physical review. B, Condensed matter.

[38]  J. Allen,et al.  Probe theory - the orbital motion approach , 1992 .

[39]  H. Ikezi Coulomb solid of small particles in plasmas , 1986 .

[40]  E. Wigner On the Interaction of Electrons in Metals , 1934 .