On the martingale property of stochastic exponentials

We present a necessary and sufficient condition for a stochastic exponential to be a true martingale. It is proved that the criteria for the true martingale property are related to whether a related process explodes. An alternative and interesting interpretation of this result is that the stochastic exponential is a true martingale if and only if under a ‘candidate measure’ the integrand process is square integrable over time. Applications of our theorem to problems arising in mathematical finance are also given.

[1]  Guy Johnson,et al.  Class $D$ supermartingales , 1963 .

[2]  L. A. Shepp,et al.  Conditions for absolute continuity between a certain pair of probability measures , 1970 .

[3]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[4]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[5]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[6]  G. Kallianpur Stochastic Filtering Theory , 1980 .

[7]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[8]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[9]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[10]  N. Kazamaki Continuous Exponential Martingales and Bmo , 1994 .

[11]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[12]  Jean-Charles Rochet,et al.  Changes of numéraire, changes of probability measure and option pricing , 1995, Journal of Applied Probability.

[13]  Shlomo Levental,et al.  A Necessary and Sufficient Condition for Absence of Arbitrage with Tame Portfolios , 1995 .

[14]  Tina Hviid Rydberg A note on the existence of unique equivalent martingale measures in a Markovian setting , 1997, Finance Stochastics.

[15]  C. Sin Complications with stochastic volatility models , 1998, Advances in Applied Probability.

[16]  L. Rogers,et al.  Complete Models with Stochastic Volatility , 1998 .

[17]  Leif Andersen,et al.  Volatility skews and extensions of the Libor market model , 1998 .

[18]  D. Heath,et al.  A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets , 2001 .

[19]  F. Delbaen,et al.  A Note on Option Pricing for the Constant Elasticity of Variance Model , 2002 .

[20]  F. Delbaen,et al.  No Arbitrage Condition for Positive Diffusion Price Processes , 2002 .

[21]  David Heath,et al.  Consistent pricing and hedging for a modified constant elasticity of variance model , 2002 .

[22]  Forward-Start Options in Stochastic Volatility Model , 2003 .