Global seismology in the interior of Enceladus

[1]  W. Banerdt,et al.  First observations of core-transiting seismic phases on Mars , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. Pappalardo,et al.  Moonquake-triggered mass wasting processes on icy satellites , 2023, Icarus.

[3]  M. Panning,et al.  Estimating the 3D structure of the Enceladus ice shell from Flexural and Crary waves using seismic simulations , 2023, Earth and Planetary Science Letters.

[4]  W. Banerdt,et al.  Locating the Largest Event Observed on Mars With Multi‐Orbit Surface Waves , 2022, Geophysical Research Letters.

[5]  W. Banerdt,et al.  Crustal Anisotropy in the Martian Lowlands From Surface Waves , 2022, Geophysical Research Letters.

[6]  I. E. Stepanova,et al.  Surface waves and crustal structure on Mars , 2022, Science.

[7]  D. DellaGiustina,et al.  The Detection of Seismicity on Icy Ocean Worlds by Single‐Station and Small‐Aperture Seismometer Arrays , 2022, Earth and Space Science.

[8]  M. Lo,et al.  Science Goals and Mission Architecture of the Europa Lander Mission Concept , 2022, The Planetary Science Journal.

[9]  M. Panning,et al.  Seismic Detection of Euroquakes Originating From Europa's Silicate Interior , 2021, Earth and Space Science.

[10]  M. Panning,et al.  Exploration of Icy Ocean Worlds Using Geophysical Approaches , 2021, The Planetary Science Journal.

[11]  R. Aster,et al.  Projected Seismic Activity at the Tiger Stripe Fractures on Enceladus, Saturn, From an Analog Study of Tidally Modulated Icequakes Within the Ross Ice Shelf, Antarctica , 2021, Journal of Geophysical Research: Planets.

[12]  W. Banerdt,et al.  Seismic Noise Autocorrelations on Mars , 2021, Earth and Space Science.

[13]  F. Postberg,et al.  The Enceladus Orbilander Mission Concept: Balancing Return and Resources in the Search for Life , 2021, The Planetary Science Journal.

[14]  H. Takenaka,et al.  Estimation of Seismic Attenuation of the Greenland Ice Sheet Using 3‐D Waveform Modeling , 2021, Journal of Geophysical Research: Solid Earth.

[15]  F. Salvini,et al.  Tectonics of Enceladus’ South Pole: Block Rotation of the Tiger Stripes , 2020, Journal of Geophysical Research: Planets.

[16]  R. Lorenz,et al.  Seismology on Titan: A seismic signal and noise budget in preparation for Dragonfly , 2020 .

[17]  J. Spitale,et al.  The formation of Enceladus' Tiger Stripe Fractures from eccentricity tides , 2020 .

[18]  W. Banerdt,et al.  Autocorrelation of the Ground Vibrations Recorded by the SEIS‐InSight Seismometer on Mars , 2020, Journal of Geophysical Research: Planets.

[19]  F. Nimmo,et al.  Heat Production and Tidally Driven Fluid Flow in the Permeable Core of Enceladus , 2020, Journal of Geophysical Research: Planets.

[20]  D. Banfield,et al.  On‐Deck Seismology: Lessons from InSight for Future Planetary Seismology , 2020, Journal of Geophysical Research: Planets.

[21]  Jeroen Tromp,et al.  Initial results from the InSight mission on Mars , 2020, Nature Geoscience.

[22]  C. Glein,et al.  The Carbonate Geochemistry of Enceladus' Ocean , 2020, Geophysical Research Letters.

[23]  Jennifer M. Brown,et al.  Holistic Approach for Studying Planetary Hydrospheres: Gibbs Representation of Ices Thermodynamics, Elasticity, and the Water Phase Diagram to 2,300 MPa , 2020, Journal of Geophysical Research: Planets.

[24]  W. Neumann,et al.  Differentiation of Enceladus and Retention of a Porous Core , 2019, The Astrophysical Journal.

[25]  P. Gerstoft,et al.  Tidal and Thermal Stresses Drive Seismicity Along a Major Ross Ice Shelf Rift , 2019, Geophysical Research Letters.

[26]  Jaroslav Hron,et al.  Tidal dissipation in Enceladus' uneven, fractured ice shell , 2019, Icarus.

[27]  Jaroslav Hron,et al.  Long-term stability of Enceladus’ uneven ice shell , 2019, Icarus.

[28]  Huafeng Liu,et al.  SEIS: Insight’s Seismic Experiment for Internal Structure of Mars , 2019, Space Science Reviews.

[29]  Sona Hosseini,et al.  The NASA Roadmap to Ocean Worlds , 2018, Astrobiology.

[30]  E. David,et al.  Low‐Frequency Measurements of Seismic Moduli and Attenuation in Antigorite Serpentinite , 2018, Geophysical Research Letters.

[31]  S. Kattenhorn,et al.  Seismicity on tidally active solid-surface worlds , 2018, Icarus.

[32]  K. Holliger,et al.  Laboratory measurements of seismic attenuation and Young's modulus dispersion in a partially and fully water‐saturated porous sample made of sintered borosilicate glass , 2018 .

[33]  E. David,et al.  Influence of fluids on VP/VS ratio: increase or decrease? , 2018, Geophysical Journal International.

[34]  S. Kempf,et al.  Surface deposition of the Enceladus plume and the zenith angle of emissions , 2018, Icarus.

[35]  J. Burns,et al.  True polar wander of Enceladus from topographic data , 2017, 1710.04594.

[36]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[37]  T. Nissen‐Meyer,et al.  Seismic Wave Propagation in Icy Ocean Worlds , 2017, 1705.03500.

[38]  Evgeny A. Podolskiy,et al.  Cryoseismology , 2016 .

[39]  A. Rivoldini,et al.  Enceladus's and Dione's floating ice shells supported by minimum stress isostasy , 2016, 1610.00548.

[40]  N. Teanby,et al.  Europa’s small impactor flux and seismic detection predictions , 2016 .

[41]  A. Trinh,et al.  The diurnal libration and interior structure of Enceladus , 2016 .

[42]  David Mimoun,et al.  Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms , 2016 .

[43]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[44]  R. Pappalardo,et al.  Gravitational spreading, bookshelf faulting, and tectonic evolution of the South Polar Terrain of Saturn’s moon Enceladus , 2015 .

[45]  D. Prialnik,et al.  A 1-D evolutionary model for icy satellites, applied to Enceladus , 2015, 1510.07223.

[46]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[47]  James H. Roberts,et al.  The fluffy core of Enceladus , 2015 .

[48]  C. Porco,et al.  Timing of water plume eruptions on Enceladus explained by interior viscosity structure , 2015 .

[49]  C. Sotin,et al.  Interiors and Evolution of Icy Satellites , 2015 .

[50]  W. McKinnon Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity , 2015 .

[51]  W. Banerdt,et al.  Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars , 2015 .

[52]  Simon C. Stähler,et al.  AxiSEM: broadband 3-D seismic wavefields in axisymmetric media , 2014 .

[53]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[54]  S. Holmes,et al.  Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data , 2014 .

[55]  Z. Zhan,et al.  Ambient noise correlation on the Amery Ice Shelf, East Antarctica , 2013 .

[56]  D. Prialnik,et al.  Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas , 2013 .

[57]  Jianguo Sun,et al.  The influence of sea water velocity variation on seismic traveltimes, ray paths, and amplitude , 2012, Applied Geophysics.

[58]  Sridhar Anandakrishnan,et al.  Seismic attenuation in glacial ice: A proxy for englacial temperature , 2012 .

[59]  Renee C. Weber,et al.  Seismic Detection of the Lunar Core , 2011, Science.

[60]  Jianwei Ma,et al.  An analysis of seismic attenuation in random porous media , 2010 .

[61]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[62]  B. Romanowicz,et al.  Long‐period seismology on Europa: 1. Physically consistent interior models , 2006 .

[63]  N. Christensen,et al.  Serpentinites, Peridotites, and Seismology , 2004 .

[64]  C. Sotin,et al.  Thermal convection in the outer shell of large icy satellites , 2001 .

[65]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[66]  K. Winkler,et al.  Seismic Wave Attenuation in Rocks , 1979 .

[67]  F. Fisher,et al.  Sound absorption in sea water , 1977 .

[68]  D. L. Anderson,et al.  Seismic investigations - The Viking Mars Lander. , 1972 .

[69]  D. Kuroiwa Internal Friction of Ice. III ; The Internal Friction of Natural Glacier Ice , 1964 .

[70]  Jeffrey R. Johnson,et al.  Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander , 2021, The Planetary Science Journal.

[71]  M. Panning,et al.  Expected Seismicity and the Seismic Noise Environment of Europa , 2017, 1705.03424.

[72]  R. Lorenz,et al.  Vital Signs: Seismology of Icy Ocean Worlds. , 2018, Astrobiology.

[73]  A. Ingersoll,et al.  Plume Origins and Plumbing: From Ocean to Surface , 2018 .

[74]  R. Aster,et al.  Glacial seismology , 2017, Reports on progress in physics. Physical Society.

[75]  F. Sohl 10.02 – Interior Structure, Composition, and Mineralogy of the Terrestrial Planets , 2015 .

[76]  P. Lognonné 10.03 – Planetary Seismology , 2015 .

[77]  T. Murray,et al.  Seismic wave attenuation in the uppermost glacier ice of Storglaciären, Sweden , 2010, Journal of Glaciology.

[78]  H. Kohnen,et al.  The temperature dependence of seismic waves in ice , 1974, Journal of Glaciology.

[79]  A. R. Gregory,et al.  ELASTIC WAVE VELOCITIES IN HETEROGENEOUS AND POROUS MEDIA , 1956 .

[80]  L. Liebermann,et al.  Attenuation of Sound in Water , 1947 .

[81]  Journal of Geophysical Research: Planets Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds , 2022 .