Positive definite metric spaces

Magnitude is a numerical invariant of finite metric spaces, recently introduced by Leinster, which is analogous in precise senses to the cardinality of finite sets or the Euler characteristic of topological spaces. It has been extended to infinite metric spaces in several a priori distinct ways. This paper develops the theory of a class of metric spaces, positive definite metric spaces, for which magnitude is more tractable than in general. Positive definiteness is a generalization of the classical property of negative type for a metric space, which is known to hold for many interesting classes of spaces. It is proved that all the proposed definitions of magnitude coincide for compact positive definite metric spaces and further results are proved about the behavior of magnitude as a function of such spaces. Finally, some facts about the magnitude of compact subsets of $$\ell _p^n$$ for $$p \le 2$$ are proved, generalizing results of Leinster for $$p=1,2$$ using properties of these spaces which are somewhat stronger than positive definiteness.

[1]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[2]  Alexander Koldobsky,et al.  Fourier Analysis in Convex Geometry , 2005 .

[3]  J. Faraut,et al.  Distances hilbertiennes invariantes sur un espace homogene , 1974 .

[4]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[5]  M. Fréchet Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  A Banach subspace of _{1/2} which does not embed in ₁ (isometric version) , 1996 .

[8]  C. Villani Optimal Transport: Old and New , 2008 .

[9]  T. Leinster,et al.  On the asymptotic magnitude of subsets of Euclidean space , 2009, 0908.1582.

[10]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[11]  Per Enflo,et al.  On a problem of Smirnov , 1970 .

[12]  C. Schütt,et al.  Some combinatorial and probabilistic inequalities and their application to Banach space theory , 1985 .

[13]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[14]  Joram Lindenstrauss,et al.  Classical Banach spaces I: Sequence Spaces. , 1977 .

[15]  L. E. Dor,et al.  Potentials and isometric embeddings inL1 , 1976 .

[16]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[17]  S. Pavoine,et al.  Measuring diversity from dissimilarities with Rao's quadratic entropy: are any dissimilarities suitable? , 2005, Theoretical population biology.

[18]  S. Willerton On the magnitude of spheres, surfaces and other homogeneous spaces , 2010, 1005.4041.

[19]  Tom Leinster,et al.  A maximum entropy theorem with applications to the measurement of biodiversity , 2009, ArXiv.

[20]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[21]  N. Bingham INDEPENDENT AND STATIONARY SEQUENCES OF RANDOM VARIABLES , 1973 .

[22]  Imbedding a Finite Metric set in an N-Dimensional Minkowski Space 1)1)This paper is a revision of part of the author’s doctoral dissertation at the University of Pennsylvania, prepared under the direction of Professor I. J. Schoenberg. , 1967 .

[23]  A. J. Lemin Isometric Embedding of Ultrametric (non-Archimedean) Spaces in Hilbert Space and Lebesgue Space , 2001 .

[24]  Carsten Thomassen,et al.  Finite metric spaces of strictly negative type , 1998 .

[25]  Toshiro Watanabe Asymptotic estimates of multi-dimensional stable densities and their applications , 2007 .

[26]  J. Krivine,et al.  Lois stables et espaces $L^p$ , 1967 .

[27]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[28]  Does negative type characterize the round sphere , 2007 .

[29]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[30]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[31]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[32]  T. Leinster The magnitude of metric spaces , 2010, Documenta Mathematica.

[33]  Hyperbolic spaces are of strictly negative type , 2001 .

[34]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[35]  Heuristic and computer calculations for the magnitude of metric spaces , 2009, 0910.5500.

[36]  Y. Katznelson An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .

[37]  Richard S. Varga,et al.  On Symmetric Ultrametric Matrices , 1993 .

[38]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[39]  A. Solow,et al.  Measuring biological diversity , 2006, Environmental and Ecological Statistics.

[40]  A. Weston,et al.  Enhanced negative type for finite metric trees , 2007, 0705.0411.

[41]  Anthony Weston,et al.  Generalized roundness and negative type. , 1997 .