Positive definite metric spaces
暂无分享,去创建一个
[1] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[2] Alexander Koldobsky,et al. Fourier Analysis in Convex Geometry , 2005 .
[3] J. Faraut,et al. Distances hilbertiennes invariantes sur un espace homogene , 1974 .
[4] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[5] M. Fréchet. Sur La Definition Axiomatique D'Une Classe D'Espaces Vectoriels Distancies Applicables Vectoriellement Sur L'Espace de Hilbert , 1935 .
[6] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[7] A Banach subspace of _{1/2} which does not embed in ₁ (isometric version) , 1996 .
[8] C. Villani. Optimal Transport: Old and New , 2008 .
[9] T. Leinster,et al. On the asymptotic magnitude of subsets of Euclidean space , 2009, 0908.1582.
[10] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[11] Per Enflo,et al. On a problem of Smirnov , 1970 .
[12] C. Schütt,et al. Some combinatorial and probabilistic inequalities and their application to Banach space theory , 1985 .
[13] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[14] Joram Lindenstrauss,et al. Classical Banach spaces I: Sequence Spaces. , 1977 .
[15] L. E. Dor,et al. Potentials and isometric embeddings inL1 , 1976 .
[16] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[17] S. Pavoine,et al. Measuring diversity from dissimilarities with Rao's quadratic entropy: are any dissimilarities suitable? , 2005, Theoretical population biology.
[18] S. Willerton. On the magnitude of spheres, surfaces and other homogeneous spaces , 2010, 1005.4041.
[19] Tom Leinster,et al. A maximum entropy theorem with applications to the measurement of biodiversity , 2009, ArXiv.
[20] J. Wells,et al. Embeddings and Extensions in Analysis , 1975 .
[21] N. Bingham. INDEPENDENT AND STATIONARY SEQUENCES OF RANDOM VARIABLES , 1973 .
[23] A. J. Lemin. Isometric Embedding of Ultrametric (non-Archimedean) Spaces in Hilbert Space and Lebesgue Space , 2001 .
[24] Carsten Thomassen,et al. Finite metric spaces of strictly negative type , 1998 .
[25] Toshiro Watanabe. Asymptotic estimates of multi-dimensional stable densities and their applications , 2007 .
[26] J. Krivine,et al. Lois stables et espaces $L^p$ , 1967 .
[27] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[28] Does negative type characterize the round sphere , 2007 .
[29] F. William Lawvere,et al. Metric spaces, generalized logic, and closed categories , 1973 .
[30] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[31] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[32] T. Leinster. The magnitude of metric spaces , 2010, Documenta Mathematica.
[33] Hyperbolic spaces are of strictly negative type , 2001 .
[34] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[35] Heuristic and computer calculations for the magnitude of metric spaces , 2009, 0910.5500.
[36] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[37] Richard S. Varga,et al. On Symmetric Ultrametric Matrices , 1993 .
[38] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[39] A. Solow,et al. Measuring biological diversity , 2006, Environmental and Ecological Statistics.
[40] A. Weston,et al. Enhanced negative type for finite metric trees , 2007, 0705.0411.
[41] Anthony Weston,et al. Generalized roundness and negative type. , 1997 .