Heat conduction across irregular and fractal-like surfaces

[1]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  S. Richardson,et al.  A model for the boundary condition of a porous material. Part 2 , 1971, Journal of Fluid Mechanics.

[4]  Geoffrey Ingram Taylor,et al.  A model for the boundary condition of a porous material. Part 1 , 1971, Journal of Fluid Mechanics.

[5]  Royal Davis Numerical methods for coordinate generation based on Schwarz-Christoffel transformations , 1979 .

[6]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[7]  Jerzy M. Floryan Conformal-mapping-based coordinate generation method for channel flows , 1985 .

[8]  Jerzy M. Floryan Conformal-mapping-based coordinate generation method for flows in periodic configurations , 1986 .

[9]  G. P. Peterson,et al.  Thermal Control of Electronic Equipment and Devices , 1990 .

[10]  C. L. Tien,et al.  Fractal Network Model for Contact Conductance , 1991 .

[11]  B. Bhatt,et al.  On flow through porous material using a generalized Schwarz–Christoffel theory , 1992 .

[12]  Mark Brady,et al.  Diffusive transport across irregular and fractal walls , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  Frank Hadsell,et al.  6. Functions of a Complex Variable , 1995 .

[14]  C. Pozrikidis Numerical computation in science and engineering , 1998 .

[15]  Marios M. Fyrillas,et al.  Conductive heat transport across rough surfaces and interfaces between two conforming media , 2001 .

[16]  Adrian Bejan,et al.  Constructal Placement of High-Conductivity Inserts in a Slab: Optimal Design of “Roughness” , 2001 .

[17]  C. Pozrikidis Shear flow over a particulate or fibrous plate , 2001 .

[18]  Shu-Kun Lin,et al.  Shape and Structure, from Engineering to Nature , 2001, Entropy.

[19]  Jeng-Tzong Chen,et al.  A Practical Guide to Boundary Element Methods with the Software Library BEMLIB , 2002 .