Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage.

Silicon nanowires (NWs) have stimulated significant interest and found numerous applications; however, many applications will require a bulk quantity of nanowires to be synthesized in a reliable way. In this paper, we report the bulk synthesis of silicon nanowires on millimeter scale Al(2)O(3) spheres with a thermal chemical vapor deposition system (CVD) via the vapor-liquid-solid (VLS) growth mechanism. The spherical substrates enable the realization of Si nanowire synthesis on three-dimensional surfaces in comparison with the synthesis on a planar, two-dimensional wafer substrate. By modifying temperature in the recipe of synthesis, both single-crystalline and crystalline core/amorphous shell Si nanowires were obtained with this nanowire-on-spherical-support method. Conspicuous distinction in crystallinity of the nanowires was revealed by transmission electron microscopy characterization. The crystalline core/amorphous shell Si nanowires were utilized to form the anode of Li-ion battery half-cells with the traditional slurry method. Galvanostatic measurement demonstrated that the maximum power capacity achievable by the electrodes was 3500 mAh/g and capacity sustained at 1100 mAh/g after 60 cycles of charging and discharging.

[1]  Andrew G. Gillies,et al.  Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. , 2010, Nature materials.

[2]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[3]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor—Liquid—Solid-Grown Silicon Wire-Array Photocathodes. , 2010 .

[4]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[5]  Yi Cui,et al.  Solution-grown silicon nanowires for lithium-ion battery anodes. , 2010, ACS nano.

[6]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[7]  Po-Chiang Chen,et al.  High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays. , 2009, ACS nano.

[8]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[9]  Qiang Zhang,et al.  Synthesis of High‐Quality, Double‐Walled Carbon Nanotubes in a Fluidized Bed Reactor , 2009 .

[10]  Po-Chiang Chen,et al.  Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. , 2008, Nano letters.

[11]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[12]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[13]  F. Wei,et al.  Large Area Growth of Aligned CNT Arrays on Spheres: Towards the Large Scale and Continuous Production , 2007, 0707.2763.

[14]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[15]  D. Wang,et al.  Germanium nanowires: from synthesis, surface chemistry, and assembly to devices , 2006, 2006 64th Device Research Conference.

[16]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[17]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[18]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[19]  Ying-Lan Chang,et al.  Oxidation resistant germanium nanowires: bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly. , 2005, Journal of the American Chemical Society.

[20]  C. Li,et al.  Chemical gating of In2O3 nanowires by organic and biomolecules , 2003 .

[21]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[22]  P. Kumta,et al.  High Capacity, Reversible Silicon Thin-Film Anodes for Lithium-Ion Batteries , 2003 .

[23]  Peidong Yang,et al.  Low-temperature wafer-scale production of ZnO nanowire arrays. , 2003, Angewandte Chemie.

[24]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[25]  A. Datye,et al.  The Preparation of Highly Dispersed Au/Al2O3 by Aqueous Impregnation , 2003 .

[26]  Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method , 2003 .

[27]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[28]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[29]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[30]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[31]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[32]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[33]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[34]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[35]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[36]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[37]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[38]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[39]  C. J. Doherty,et al.  Controlled Vapor‐Liquid‐Solid Growth of Silicon Crystals , 1966 .

[40]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .