The Effect of Nondeterministic Parameters on Shock-Associated Noise Prediction Modeling

Engineering applications for aircraft noise prediction contain models for physical phenomenon that enable solutions to be computed quickly. These models contain parameters that have an uncertainty not accounted for in the solution. To include uncertainty in the solution, nondeterministic computational methods are applied. Using prediction models for supersonic jet broadband shock-associated noise, fixed model parameters are replaced by probability distributions to illustrate one of these methods. The results show the impact of using nondeterministic parameters both on estimating the model output uncertainty and on the model spectral level prediction. In addition, a global sensitivity analysis is used to determine the influence of the model parameters on the output, and to identify the parameters with the least influence on model output.

[1]  Milo D. Dahl,et al.  Assessment of NASA's Aircraft Noise Prediction Capability , 2012 .

[2]  David A. Ratkowsky,et al.  Nonlinear regression modeling : a unified practical approach , 1984 .

[3]  James Bridges,et al.  SHJAR Jet Noise Data and Power Spectral Laws , 2009 .

[4]  Christopher K. W. Tam,et al.  Broadband shock-associated noise of moderately imperfectly expanded supersonic jets , 1990 .

[5]  Michael S. Eldred,et al.  DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis. Version 5.0, user's reference manual. , 2010 .

[6]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[7]  ERRORS AND UNCERTAINTIES IN PROBABILISTIC ENGINEERING ANALYSIS , 2001 .

[8]  P. Sprent,et al.  Nonlinear Regression Modeling-A Unified Practical Approach. , 1985 .

[9]  Milo D. Dahl,et al.  Predictions of Supersonic Jet Mixing and Shock-Associated Noise Compared With Measured Far-Field Data , 2010 .

[10]  Ahmed K. Noor Nondeterministic Approaches and Their Potential for Future Aerospace Systems , 2001 .

[11]  James Bridges,et al.  Development of Jet Noise Power Spectral Laws Using SHJAR Data , 2009 .

[12]  Stefano Tarantola,et al.  Sensitivity analysis practices: Strategies for model-based inference , 2006, Reliab. Eng. Syst. Saf..

[13]  Michael S. Eldred,et al.  DAKOTA , A Multilevel Parallel Object-Oriented Framework for Design Optimization , Parameter Estimation , Uncertainty Quantification , and Sensitivity Analysis Version 4 . 0 User ’ s Manual , 2006 .

[14]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[15]  K Ahmed Noor Perspectives on Nondeterministic Approaches , 2004 .

[16]  Marcus Harper-Bourne On Modelling the Near-Field Noise of the High-speed Jet Exhausts of Combat Aircraft , 2002 .

[17]  James Bridges,et al.  Assessment of Current Jet Noise Prediction Capabilities , 2008 .

[18]  Michael S. Eldred,et al.  Model Calibration under Uncertainty: Matching Distribution Information , 2008 .

[19]  P R Gliebe,et al.  HIGH VELOCITY JET NOISE SOURCE LOCATION AND REDUCTION. TASK 6. SUPPLEMENT. COMPUTER PROGRAMS: ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION METHOD AND UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) FOR NOZZLES OF ARBITARY SHAPE , 1979 .

[20]  Christopher K. W. Tam Forward flight effects on broadband shock associated noise of supersonic jets , 1989 .

[21]  Philip J. Morris,et al.  The Prediction of Broadband Shock-Associated Noise Using RANS CFD , 2009 .

[22]  S. Rahman Reliability Engineering and System Safety , 2011 .