Stepwise mutation likelihood computation by sequential importance sampling in subdivided population models.

An importance sampling algorithm for computing the likelihood of a sample of genes at loci under a stepwise mutation model in a subdivided population is developed. This allows maximum likelihood estimation of migration rates between subpopulations. The time to the most recent common ancestor of the sample can also be computed. The technique is illustrated by an analysis of a data set of Australian red fox populations.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Robert C. Gri ths Ancestral inference from gene trees in subdivided populations , 1999 .

[3]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[4]  Laurent Excoffier,et al.  Analysis of Population Subdivision , 2004 .

[5]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[6]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[7]  Wandering distributions and the electrophoretic profile. , 1975, Theoretical population biology.

[8]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[9]  H. Herbots The Structured Coalescent. , 1997 .

[10]  R. Nielsen A likelihood approach to populations samples of microsatellite alleles. , 1997, Genetics.

[11]  C. Marks,et al.  Microsatellite differentiation between Phillip Island and mainland Australian populations of the red fox Vulpes vulpes , 1996, Molecular ecology.

[12]  François Rousset,et al.  Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance. , 2003, Molecular biology and evolution.

[13]  D. Balding,et al.  Handbook of statistical genetics , 2004 .

[14]  M. De Iorio,et al.  Importance sampling on coalescent histories. I , 2004, Advances in Applied Probability.

[15]  P. Donnelly,et al.  Inference in molecular population genetics , 2000 .

[16]  M. De Iorio,et al.  Importance sampling on coalescent histories. II: Subdivided population models , 2004, Advances in Applied Probability.

[17]  D. Balding,et al.  Genealogical inference from microsatellite data. , 1998, Genetics.

[18]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[19]  P. Donnelly,et al.  Progress in population genetics and human evolution , 1997 .

[20]  J. Felsenstein,et al.  Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. , 1999, Genetics.

[21]  F Rousset,et al.  Equilibrium values of measures of population subdivision for stepwise mutation processes. , 1996, Genetics.

[22]  B. Ripley Statistical inference for spatial processes , 1990 .

[23]  P. Donnelly,et al.  Estimating recombination rates from population genetic data. , 2001, Genetics.

[24]  Robert C. Griffiths,et al.  Coalescence time for two genes from a subdivided population , 2001, Journal of mathematical biology.

[25]  Yuguo Chen,et al.  Stopping‐time resampling for sequential Monte Carlo methods , 2005 .

[26]  T. J. Mitchell,et al.  Bayesian Prediction of Deterministic Functions, with Applications to the Design and Analysis of Computer Experiments , 1991 .

[27]  M. Stephens,et al.  Inference Under the Coalescent , 2004 .

[28]  Motoo Kimura,et al.  A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population*. , 1973, Genetical research.

[29]  G. McVean,et al.  Estimating recombination rates from population-genetic data , 2003, Nature Reviews Genetics.

[30]  C. J-F,et al.  THE COALESCENT , 1980 .

[31]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[32]  Peter Beerli,et al.  Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Nagylaki The robustness of neutral models of geographical variation , 1983 .

[34]  F. Rousset Inferences from Spatial Population Genetics , 2004 .

[35]  M. Notohara,et al.  The coalescent and the genealogical process in geographically structured population , 1990, Journal of mathematical biology.

[36]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[37]  C. Simulating Probability Distributions in the Coalescent * , 2022 .

[38]  Henry P. Wynn,et al.  [Design and Analysis of Computer Experiments]: Rejoinder , 1989 .

[39]  M. Nordborg,et al.  Coalescent Theory , 2019, Handbook of Statistical Genomics.

[40]  P. Moran Wandering distributions and the electrophoretic profile. , 1975, Theoretical population biology.