Unimodal kernel density estimation by datra sharpening

We discuss a robust data sharpening method for rendering a standard kernel estimator, with a given bandwidth, unimodal. It has theoretical and nu- merical properties of the type that one would like such a technique to enjoy. In particular, we show theoretically that, with probability converging to 1 as sample size diverges, our technique alters the kernel estimator only in places where the lat- ter has spurious bumps, and is identical to the kernel estimator in places where that estimator is monotone in the correct direction. Moreover, it automatically splices together, in a smooth and seamless way, those parts of the estimator that it leaves unchanged and those that it adjusts. Provided the true density is unimodal our estimator generally reduces mean integrated squared error of the standard kernel estimator.

[1]  U. Grenander On the theory of mortality measurement , 1956 .

[2]  Prakasa Rao Estimation of a unimodal density , 1969 .

[3]  P. Major,et al.  An approximation of partial sums of independent RV'-s, and the sample DF. I , 1975 .

[4]  D. F. Andrews,et al.  Robust Estimates of Location: Survey and Advances. , 1975 .

[5]  C. J. Lawrence Robust estimates of location : survey and advances , 1975 .

[6]  R. Tibshirani,et al.  The Monotone Smoothing of Scatterplots , 1984 .

[7]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[8]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[9]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[10]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[11]  C. Kelly,et al.  Monotone smoothing with application to dose-response curves and the assessment of synergism. , 1990, Biometrics.

[12]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[13]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[14]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[15]  Michael Woodroofe,et al.  Isotonic smoothing splines under sequential designs , 1994 .

[16]  Generalization of least-square isotonic regression , 1994 .

[17]  Christine Thomas-Agnan,et al.  A shape constrained smoother: simulation study , 1995 .

[18]  Yazhen Wang The L 1 theory of estimation of monotone and unimodal densities , 1995 .

[19]  Peter J. Bickel,et al.  SOME PROBLEMS ON THE ESTIMATION OF UNIMODAL DENSITIES , 1996 .

[20]  Anne-Laure Fougères,et al.  Estimation de densités unimodales , 1997 .

[21]  L. Birge,et al.  Estimation of unimodal densities without smoothness assumptions , 1997 .

[22]  B. Presnell,et al.  Density Estimation under Constraints , 1999 .

[23]  Christine Thomas-Agnan,et al.  Smoothing Splines and Shape Restrictions , 1999 .

[24]  T. Gasser,et al.  Nonparametric Density Estimation under Unimodality and Monotonicity Constraints , 1999 .

[25]  P. Hall,et al.  NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .

[26]  W. John Braun,et al.  Data Sharpening for Nonparametric Inference Subject to Constraints , 2001 .

[27]  Peter Hall,et al.  UNIMODAL DENSITY ESTIMATION USING KERNEL METHODS , 2002 .

[28]  R. L. Eubank,et al.  Monotone Smoothing with Application to Dose-Response Curve , 2006 .