Long-term adaptive symplectic numerical integration of linear stochastic oscillators driven by additive white noise

In this paper, we present an adaptive variable step size numerical scheme for the integration of linear stochastic oscillator equations driven by additive Brownian white noise. We first show that traditional adaptive schemes based on local error estimation destroy the long-time behavior of the underlying method. As a remedy, we extend the idea presented in Hairer and Söderlind (SIAM J. Sci. Comput. 26(6), 1838–1851 2005) to the stochastic setting and show that using step density control mechanisms based on time regularization and local error tracking, we are able to obtain numerical schemes which preserve the important qualitative features of the solution process such as symmetry, time reversibility, symplecticity, linear growth rate of the second moment, and infinite oscillation. Numerical experiments confirm the theoretical findings of the paper.

[1]  Lijin Wang,et al.  Predictor-corrector methods for a linear stochastic oscillator with additive noise , 2007, Math. Comput. Model..

[2]  Wayne H. Enright,et al.  Adaptive time-stepping for the strong numerical solution of stochastic differential equations , 2015, Numerical Algorithms.

[3]  Yau Shu Wong,et al.  High-Order Symplectic Schemes for Stochastic Hamiltonian Systems , 2014 .

[4]  Ernst Hairer,et al.  Variable time step integration with symplectic methods , 1997 .

[5]  Qiang Ma,et al.  Stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with multiplicative noise , 2015, Appl. Math. Comput..

[6]  S. Hosseini,et al.  A new adaptive Runge-Kutta method for stochastic differential equations , 2007 .

[7]  国田 寛 Stochastic flows and stochastic differential equations , 1990 .

[8]  Seyed Mohammad Hosseini,et al.  A variable step-size control algorithm for the weak approximation of stochastic differential equations , 2010, Numerical Algorithms.

[9]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[10]  Susanne Mauthner,et al.  Step size control in the numerical solution of stochastic differential equations , 1998 .

[11]  Jürgen Lehn,et al.  A step size control algorithm for the weak approximation of stochastic differential equations , 2007, Numerical Algorithms.

[12]  P. Kloeden,et al.  Pathwise convergent higher order numerical schemes for random ordinary differential equations , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  J. Lamb,et al.  Time-reversal symmetry in dynamical systems: a survey , 1998 .

[14]  Gustaf Söderlind,et al.  Time-step selection algorithms: Adaptivity, control, and signal processing , 2006 .

[15]  Jessica G. Gaines,et al.  Variable Step Size Control in the Numerical Solution of Stochastic Differential Equations , 1997, SIAM J. Appl. Math..

[16]  Chris J. Budd,et al.  Adaptive Geometric Integrators for Hamiltonian Problems with Approximate Scale Invariance , 2005, SIAM J. Sci. Comput..

[17]  J. C. Jimenez,et al.  Locally Linearized methods for the simulation of stochastic oscillators driven by random forces , 2017 .

[18]  Benedict J. Leimkuhler,et al.  The Adaptive Verlet Method , 1997, SIAM J. Sci. Comput..

[19]  J. Dormand,et al.  Numerical Methods for Differential Equations: A Computational Approach , 2017 .

[20]  Sebastian Reich,et al.  Explicit variable step-size and time-reversible integration , 2001 .

[21]  Tarun Kumar Rawat,et al.  On stochastic modelling of linear circuits , 2010, Int. J. Circuit Theory Appl..

[22]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[23]  Tetsuya Misawa,et al.  Symplectic Integrators to Stochastic Hamiltonian Dynamical Systems Derived from Composition Methods , 2010 .

[24]  G. N. Milstein,et al.  Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..

[25]  S. Strogatz,et al.  Stability of incoherence in a population of coupled oscillators , 1991 .

[26]  Harbir Lamba,et al.  An adaptive timestepping algorithm for stochastic differential equations , 2003 .

[27]  F. Bai,et al.  DYNAMICS AND VARIATIONAL INTEGRATORS OF STOCHASTIC HAMILTONIAN SYSTEMS , 2009 .

[28]  Kevin Burrage,et al.  Numerical Methods for Second-Order Stochastic Differential Equations , 2007, SIAM J. Sci. Comput..

[29]  A. Iserles,et al.  Explicit adaptive symplectic integrators for solving Hamiltonian systems , 2012 .

[30]  Moshe Gitterman,et al.  The noisy oscillator : the first hundred years, from Einstein until now , 2005 .

[31]  David Cohen,et al.  On the numerical discretisation of stochastic oscillators , 2012, Math. Comput. Simul..

[32]  Ernst Hairer,et al.  Explicit, Time Reversible, Adaptive Step Size Control , 2005, SIAM J. Sci. Comput..

[33]  S. Mikkola,et al.  Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians , 1999 .

[34]  D. Stoffer,et al.  Variable steps for reversible integration methods , 1995, Computing.

[35]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[36]  Jialin Hong,et al.  Symplectic Numerical Methods for a Linear Stochastic Oscillator with Two Additive Noises , 2011 .

[37]  Jialin Hong,et al.  Generating functions for stochastic symplectic methods , 2013 .

[38]  N. Bershad,et al.  Random differential equations in science and engineering , 1975, Proceedings of the IEEE.

[39]  J. Candy,et al.  Symplectic integrators for long-term integrations in celestial mechanics , 1991 .

[40]  Jialin Hong,et al.  Projection methods for stochastic differential equations with conserved quantities , 2016, 1601.04157.

[41]  J. D. López,et al.  Constant coefficient linear multistep methods with step density control , 2007 .

[42]  Gustaf Söderlind,et al.  Digital filters in adaptive time-stepping , 2003, TOMS.

[43]  S. Tremaine,et al.  A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems , 1999, astro-ph/9906322.

[44]  Desmond J. Higham,et al.  Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .

[45]  K. Burrage,et al.  Adaptive stepsize based on control theory for stochastic differential equations , 2004 .

[46]  Lawrence F. Shampine,et al.  Local error estimation by doubling , 1985, Computing.

[47]  Xuerong Mao,et al.  Stochastic differential equations and their applications , 1997 .

[48]  Francesco Petruccione,et al.  Simulation of one-dimensional noisy Hamiltonian systems and their application to particle storage rings , 1994 .

[49]  R. Tempone,et al.  Adaptive weak approximation of stochastic differential equations , 2001 .

[50]  M. J. Senosiain,et al.  A review on numerical schemes for solving a linear stochastic oscillator , 2015 .

[51]  K. F. Sundman,et al.  Mémoire sur le problème des trois corps , 1913 .

[52]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[53]  Mari Paz Calvo,et al.  The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..

[54]  Vassilios Sotiropoulos,et al.  An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept. , 2008, The Journal of chemical physics.

[55]  Kevin Burrage,et al.  A Variable Stepsize Implementation for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[56]  Klaus Ritter,et al.  The Optimal Discretization of Stochastic Differential Equations , 2001, J. Complex..

[57]  Quantum dynamics with non-Markovian fluctuating parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Jingjing Zhang,et al.  Discrete Gradient Approach to Stochastic Differential Equations with a Conserved Quantity , 2011, SIAM J. Numer. Anal..

[59]  Gustaf Söderlind,et al.  Automatic Control and Adaptive Time-Stepping , 2002, Numerical Algorithms.

[60]  Á. Tocino,et al.  On preserving long-time features of a linear stochastic oscillator , 2007 .