Visual Orientation and Navigation in Nocturnal Arthropods

With their highly sensitive visual systems, the arthropods have evolved a remarkable capacity to orient and navigate at night. Whereas some navigate under the open sky, and take full advantage of the celestial cues available there, others navigate in more difficult conditions, such as through the dense understory of a tropical rainforest. Four major classes of orientation are performed by arthropods at night, some of which involve true navigation (i.e. travel to a distant goal that lies beyond the range of direct sensory contact): (1) simple straight-line orientation, typically for escape purposes; (2) nightly short-distance movements relative to a shoreline, typically in the context of feeding; (3) long-distance nocturnal migration at high altitude in the quest to locate favorable feeding or breeding sites, and (4) nocturnal excursions to and from a fixed nest or food site (i.e. homing), a task that in most species involves path integration and/or the learning and recollection of visual landmarks. These four classes of orientation – and their visual basis – are reviewed here, with special emphasis given to the best-understood animal systems that are representative of each.

[1]  Colette Rivault,et al.  Path integration in cockroach larvae,Blattella germanica (L.) (insect: Dictyoptera): Direction and distance estimation , 1999 .

[2]  Y. Steinberger,et al.  Feeding, energy flow and soil turnover in the desert isopod, Hemilepistus reaumuri , 1976, Oecologia.

[3]  R. Wehner,et al.  The Ant Odometer: Stepping on Stilts and Stumps , 2006, Science.

[4]  Eric J. Warrant,et al.  Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis , 2007, Journal of Comparative Physiology A.

[5]  G. Hoffmann,et al.  Orientation behaviour of the desert woodlouse Hemilepistus reaumuri: adaptations to ecological and physiological problems , 1984 .

[6]  R. B. Srygley,et al.  Magnetoreception in eusocial insects: an update , 2010, Journal of The Royal Society Interface.

[7]  S. Emlen The stellar-orientation system of a migratory bird. , 1975, Scientific American.

[8]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[9]  Lore Becker,et al.  Untersuchungen über das Heimfindevermögen der Bienen , 1958, Zeitschrift für vergleichende Physiologie.

[10]  C. Rivault,et al.  Homing in German Cockroaches, Blattella germanica (L.) (Insecta: Dictyoptera): Multi‐Channelled Orientation Cues , 2004 .

[11]  B. Hölldobler,et al.  Orientation and Communication in the Neotropical Ant Odontomachus bauri Emery (Hymenoptera, Formicidae, Ponerinae) , 2010 .

[12]  Eric Warrant,et al.  Vision in the dimmest habitats on Earth , 2004, Journal of Comparative Physiology A.

[13]  Thomas S. Collett,et al.  How do insects use path integration for their navigation? , 2000, Biological Cybernetics.

[14]  Eric J. Warrant,et al.  Scotopic colour vision in nocturnal hawkmoths , 2002, Nature.

[15]  Mandyam V. Srinivasan,et al.  Small brains, smart minds: vision, perception, navigation and 'cognition' in insects , 2006 .

[16]  F. E. Doujak Can a shore crab see a star , 1985 .

[17]  R. Wehner,et al.  Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue? , 2003, Journal of Comparative Physiology A.

[18]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[19]  Travis Longcore,et al.  Ecological light pollution , 2004 .

[20]  Ring T. Cardé,et al.  Effects of light levels and plume structure on the orientation manoeuvres of male gypsy moths flying along pheromone plumes , 2000 .

[21]  A. G. Gatehouse Behavior and ecological genetics of wind-borne migration by insects. , 1997, Annual review of entomology.

[22]  B. Ehmer Orientation in the Ant Paraponera clavata , 1999, Journal of Insect Behavior.

[23]  Almut Kelber,et al.  Nocturnal bees learn landmark colours in starlight , 2008, Current Biology.

[24]  M. J. Farmery,et al.  Observations of the flight behaviour of the army worm moth, Spodoptera exempta, at an emergence site using radar and infra‐red optical techniques , 1983 .

[25]  Rudolf Jander,et al.  Die optische Richtungsorientierung der Roten Waldameise (Formica Ruea L.) , 1957, Zeitschrift für vergleichende Physiologie.

[26]  Gábor Horváth,et al.  Polarization of the moonlit clear night sky measured by full‐sky imaging polarimetry at full Moon: Comparison of the polarization of moonlit and sunlit skies , 2001 .

[27]  V. Drake,et al.  Radar observations of moths migrating in a nocturnal low‐level jet , 1985 .

[28]  R. C. RAINEY,et al.  Weather and the Movements of Locust Swarms: A New Hypothesis , 1951, Nature.

[29]  Allen Cheung,et al.  Animal navigation: the difficulty of moving in a straight line , 2007, Biological Cybernetics.

[30]  The timing of premating and mating behavior in a field population of the cricket Gryllus campestris L. , 1987, Behavioral Ecology and Sociobiology.

[31]  S. Sotthibandhu,et al.  Celestial orientation by the large yellow underwing moth, Noctua pronuba L , 1979, Animal Behaviour.

[32]  R. Jeanne,et al.  Observations onApoica pallens, a nocturnal neotropical social wasp (Hymenoptera: Vespidae, Polistinae, Epiponini) , 1995, Insectes Sociaux.

[33]  B. Ronacher,et al.  Distance estimation in the third dimension in desert ants , 2002, Journal of Comparative Physiology A.

[34]  F. Papi,et al.  ON THE LUNAR ORIENTATION OF SANDHOPPERS (AMPHIPODA TALITRIDAE) , 1963 .

[35]  Thomas Labhart,et al.  Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study , 2004, Journal of Comparative Physiology A.

[36]  T. Hariyama,et al.  Canopy compass in nocturnal homing of the subsocial shield bug, Parastrachia japonensis (Heteroptera: Parastrachiidae) , 2008, Naturwissenschaften.

[37]  B. Hölldobler,et al.  A behavioral study of the primitive antNothomyrmecia macrops Clark , 1983, Insectes Sociaux.

[38]  When the beachhopper looks at the moon: The moon compass hypothesis , 1972 .

[39]  Alison M. Sweeney,et al.  Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor , 2006, Journal of Experimental Biology.

[40]  R. Wehner,et al.  Vision in the nocturnal wandering spider Leucorchestris arenicola (Araneae: Sparassidae) , 2008, Journal of Experimental Biology.

[41]  S. J. Martin Hornets (Hymenoptera : Vespinae) of Malaysia , 1995 .

[42]  A. Reynolds,et al.  A single wind-mediated mechanism explains high-altitude ‘non-goal oriented’ headings and layering of nocturnally migrating insects , 2010, Proceedings of the Royal Society B: Biological Sciences.

[43]  Don R. Reynolds,et al.  Flight Orientation Behaviors Promote Optimal Migration Trajectories in High-Flying Insects , 2010, Science.

[44]  Martin Egelhaaf,et al.  The neural computation of visual motion information. , 2006 .

[45]  Ajay Narendra,et al.  The twilight zone: ambient light levels trigger activity in primitive ants , 2010, Proceedings of the Royal Society B: Biological Sciences.

[46]  B. Hölldobler Canopy orientation: a new kind of orientation in ants. , 1980, Science.

[47]  W. Bailey,et al.  Homing behaviour of juvenile Australian raspy crickets (Orthoptera: Gryllacrididae) , 2004 .

[48]  P. Graham,et al.  Ants use the panoramic skyline as a visual cue during navigation , 2009, Current Biology.

[49]  Eric J. Warrant,et al.  Lunar orientation in a beetle , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  Wolfgang Stürzl,et al.  Visual Homing in Insects and Robots , 2010, Flying Insects and Robots.

[51]  T. Norgaard NOCTURNAL NAVIGATION IN LEUCORCHESTRIS ARENICOLA (ARANEAE, SPARASSIDAE) , 2005 .

[52]  A. S. Edwards,et al.  Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. , 1995 .

[53]  A. Baader,et al.  The significance of visual landmarks for navigation of the giant tropical ant,Paraponera clavata (Formicidae, Ponerinae) , 1996, Insectes Sociaux.

[54]  Collective orientation by nocturnally migrating australian plague locusts, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): a radar study , 1983 .

[55]  Simon B. Laughlin,et al.  Visual ecology and voltage-gated ion channels in insect photoreceptors , 1995, Trends in Neurosciences.

[56]  L. Pardi,et al.  Ricerche sull'Orientamento di Talitrus Saltator (Montagu) (Crustacea—Amphipoda) , 1953, Zeitschrift für vergleichende Physiologie.

[57]  J. Riley,et al.  Visual detection of wind-drift by high-flying insects at night: a laboratory study , 1988, Journal of Comparative Physiology A.

[58]  G. Dehnhardt,et al.  Harbour seals (Phoca vitulina) can steer by the stars , 2008, Animal Cognition.

[59]  Eric J. Warrant,et al.  Visual cues used by ball-rolling dung beetles for orientation , 2003, Journal of Comparative Physiology A.

[60]  R. Wehner Astronavigation in insects , 1984 .

[61]  J. Klotz,et al.  Nocturnal orientation in the black carpenter antCamponotus pennsylvanicus (DeGeer) (Hymenoptera: Formicidae) , 1993, Insectes Sociaux.

[62]  Kongming Wu,et al.  High-Altitude Windborne Transport of Helicoverpa armigera (Lepidoptera: Noctuidae) in Mid-Summer in Northern China , 2005, Journal of Insect Behavior.

[63]  Thomas S. Collett,et al.  The selection and use of landmarks by insects , 1997 .

[64]  L. Mercatelli,et al.  Moon orientation in adult and young sandhoppers under artificial light , 2005, Proceedings of the Royal Society B: Biological Sciences.

[65]  R. Wehner,et al.  Use of local cues in the night-time navigation of the wandering desert spider Leucorchestris arenicola (Araneae, Sparassidae) , 2007, Journal of Comparative Physiology A.

[66]  Polarisation vision , 2011, Current Biology.

[67]  T. Hariyama,et al.  The Directional Homing Behaviour of the Subsocial Shield Bug, Parastrachia japonensis (Heteroptera: Cydnidae), under Different Photic Conditions , 2003, Zoological science.

[68]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[69]  G. Horváth,et al.  How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. , 2001, The Journal of experimental biology.

[70]  Paul Graham,et al.  The influence of beacon-aiming on the routes of wood ants , 2003, Journal of Experimental Biology.

[71]  Robert W. Taylor,et al.  Nothomyrmecia macrops: A Living-Fossil Ant Rediscovered , 1978, Science.

[72]  Eric J Warrant,et al.  Seeing in the dark: vision and visual behaviour in nocturnal bees and wasps , 2008, Journal of Experimental Biology.

[73]  A. Ugolini Activity rhythms and orientation in sandhoppers (Crustacea, Amphipoda). , 2003, Frontiers in bioscience : a journal and virtual library.

[74]  A. Ugolini,et al.  Astronomical orientation and learning in the earwig Labidura riparia , 1996, Behavioural Processes.

[75]  A. Cheung,et al.  Which coordinate system for modelling path integration? , 2010, Journal of theoretical biology.

[76]  M. J. Byrne,et al.  How dim is dim? Precision of the celestial compass in moonlight and sunlight , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[77]  J. Hailman Ecology of Vision , 1981 .

[78]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[79]  C. Melis,et al.  Moon and sun compasses in sandhoppers rely on two separate chronometric mechanisms , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  Friedrich G. Barth,et al.  Idiothetic orientation of a wandering spider: Compensation of detours and estimates of goal distance , 1982, Behavioral Ecology and Sociobiology.

[81]  Ian P. Woiwod,et al.  Wind Selection and Drift Compensation Optimize Migratory Pathways in a High-Flying Moth , 2008, Current Biology.

[82]  H. F. Landreth,et al.  Astronomical Orientation of the Southern Cricket Frog, Acris gryllus , 1965 .

[83]  Jochen Zeil,et al.  Catchment areas of panoramic snapshots in outdoor scenes. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[84]  F. Scapini,et al.  Surface activity, zonation and migrations of Talitrus saltator on a Mediterranean beach , 1992 .

[85]  O. Rasa Evidence for subsociality and division of labor in a desert tenebrionid beetleParastizopus armaticeps peringuey , 1990, The Science of Nature.

[86]  Eric J. Warrant,et al.  Visual Reliability and Information Rate in the Retina of a Nocturnal Bee , 2008, Current Biology.

[87]  Rüdiger Wehner,et al.  Ant odometry in the third dimension , 2001, Nature.

[88]  R. Wehner Spatial Vision in Arthropods , 1981 .

[89]  R. Wehner Polarization vision--a uniform sensory capacity? , 2001, The Journal of experimental biology.

[90]  M. I. Mote,et al.  Polarization sensitivity , 2004, Journal of comparative physiology.

[91]  M. F. Land,et al.  Built-in polarizers form part of a compass organ in spiders , 1999, Nature.

[92]  Collett,et al.  Learning walks and landmark guidance in wood ants (Formica rufa) , 1999, The Journal of experimental biology.

[93]  M. Dacke,et al.  Polarized light detection in spiders. , 2001, The Journal of experimental biology.

[94]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[95]  L. Chittka,et al.  The influences of landmarks on distance estimation of honey bees , 1995, Animal Behaviour.

[96]  A. Ugolini,et al.  Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae) , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[98]  A. Borst Drosophila's View on Insect Vision , 2009, Current Biology.

[99]  U. Maschwitz,et al.  Biology of the Southeast Asian nocturnal wasp, Provespa anomala (Hymenoptera: Vespidae) , 1988 .

[100]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[101]  T Labhart,et al.  Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. , 2001, The Journal of experimental biology.

[102]  M V Srinivasan,et al.  Two odometers in honeybees? , 2008, Journal of Experimental Biology.

[103]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[104]  R. Wehner,et al.  The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola , 2006, Journal of Comparative Physiology A.

[105]  W. Hill,et al.  5 – Effects of Light , 1996 .

[106]  Miranda Beverly-Whittemore The Effects of Light , 2005 .

[107]  Paul Graham,et al.  Navigational Memories in Ants and Bees: Memory Retrieval When Selecting and Following Routes , 2006 .

[108]  L. Mercatelli,et al.  Moon orientation on moonless nights , 2007, Animal Behaviour.

[109]  L. Chittka,et al.  The significance of landmarks for path integration in homing honeybee foragers , 1995, Naturwissenschaften.

[110]  Peter Nordström,et al.  Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus , 2003, Journal of Experimental Biology.

[111]  Eric J. Warrant,et al.  Visual ecology of Indian carpenter bees I: Light intensities and flight activity , 2007, Journal of Comparative Physiology A.

[112]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[113]  F. Schremmer Beobachtungen zur Biologie vonApoica pallida (Olivier, 1791), Einer Neotropischen Sozialen Faltenwespe (Hymenoptera, Vespidae) , 1972, Insectes Sociaux.

[114]  D. Varjú,et al.  Polarized Light in Animal Vision: Polarization Patterns in Nature , 2004 .

[115]  Janice G. Mather,et al.  Magnetic compass sense in the large yellow underwing moth, Noctua pronuba L. , 1982, Animal Behaviour.

[116]  A. Gagliardo,et al.  Moon orientation in sandhoppers: effects of lighting treatments on the persistence of orientation ability , 2007 .

[117]  Thomas Labhart,et al.  Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions , 2007, Journal of Experimental Biology.

[118]  W. Kerfoot The lunar periodicity of Sphecodogastra texana, a nocturnal bee (Hymenoptera: Halictidae). , 1967, Animal behaviour.

[119]  Bartsch,et al.  Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia , 1999, The Journal of experimental biology.

[120]  Robert W. Taylor BLOODY FUNNY WASPS! SPECULATIONS ON THE EVOLUTION OF EUSOCIALITY IN ANTS , 2007 .

[121]  A. Gagliardo,et al.  Lunar orientation in sandhoppers is affected by shifting both the moon phase and the daily clock , 2008, Animal Behaviour.

[122]  Klaus Schmidt-Koenig,et al.  Animal Orientation and Navigation , 1972 .

[123]  M. Lehrer,et al.  Small-scale navigation in the honeybee: active acquisition of visual information about the goal , 1996, The Journal of experimental biology.

[124]  Don R. Reynolds,et al.  Orientation at Night by High-Flying Insects , 1986 .

[125]  Moon orientation in adult and young sandhoppers , 1999, Journal of Comparative Physiology A.

[126]  T. Hariyama,et al.  Hierarchical use of chemical marking and path integration in the homing trip of a subsocial shield bug , 2007, Animal Behaviour.

[127]  T. Hariyama,et al.  Round-the-clock Homing Behavior of a Subsocial Shield Bug, Parastrachia japonensis (Heteroptera: Parastrachiidae), Using Path Integration , 2007, Zoological science.

[128]  D. Reynolds,et al.  A seasonal switch in compass orientation in a high-flying migrant moth , 2008, Current Biology.

[129]  H. Dingle Migration: The Biology of Life on the Move , 1996 .

[130]  Wolfgang Stürzl,et al.  Depth, contrast and view-based homing in outdoor scenes , 2007, Biological Cybernetics.

[131]  F. Papi Orientation by night: the moon. , 1960, Cold Spring Harbor symposia on quantitative biology.