Kinetics of Al grain growth, Al2Cu precipitation, and dissolution in blanket thin films and fine lines

The apparent activation energy Ea for Al grain growth, Al2Cu (Θ‐phase) precipitation, and Al2Cu dissolution were determined by ramped resistance measurements for both Al(Cu) blanket films and patterned lines. The Ea’s measured for the initial stages of grain growth in 0.5‐, 1‐, and 2‐μm‐thick Al(4 wt % Cu), Al(2 wt % Cu), and Al films ranged from 1.19 to 1.46 eV. The Ea’s for grain growth were higher for 0.6–0.9‐μm‐wide Al(Cu) lines than for blanket Al(Cu) films 1.89–3.1 eV, and the temperature of the peak transformation rate occurred at a much higher temperature, 310–400 vs 90–155 °C. This is due to the geometric constraints in patterned lines. The Ea’s for Al2Cu precipitation in Al(4 wt % Cu) and Al(2 wt % Cu) films varied from 0.86 to 1.25 eV. For 0.6‐μm‐wide Al(4 wt % Cu) lines, the Ea for Al2Cu precipitation was 1.7 eV. The Ea’s for Al2Cu dissolution increased with decreasing Cu content from 1.62–1.74 eV to 2.23–2.30 eV with Al(4 wt % Cu) and Al(2 wt % Cu) films, respectively. The temperature of the ...

[1]  M. Shatzkes,et al.  Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces , 1970 .

[2]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[3]  E. J. Mittemeijer,et al.  Analysis of transformation kinetics by nonisothermal dilatometry , 1986 .

[4]  C. Laird,et al.  Precipitation in thin foils of Al-4 wt.% Cu alloy—II. Growth kinetics of θ precipitates , 1975 .

[5]  Ramnath Venkatraman,et al.  Mechanical properties and microstructural characterization of Al-0.5%Cu thin films , 1990 .

[6]  P. S. Ho,et al.  Diffusion Phenomena in Thin Films and Microelectronic Materials , 1989 .

[7]  Carl V. Thompson,et al.  Development of near‐bamboo and bamboo microstructures in thin‐film strips , 1992 .

[8]  John Arents,et al.  Thermodynamics of solids , 1962 .

[9]  T. Lu,et al.  Texture Development in Thin Metallic Films , 1991 .

[10]  D. W. Henderson,et al.  Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids , 1979 .

[11]  A. D. Romig,et al.  The evolution of microstructure in Al-2 Pct Cu thin films: Precipitation, dissolution, and reprecipitation , 1990 .

[12]  Paul L. Rossiter,et al.  The Electrical Resistivity of Metals and Alloys , 1987 .

[13]  H. Aaronson,et al.  Growth of grain boundary precipitates in Al-4% Cu by interfacial diffusion , 1968 .

[14]  G. Stoney The Tension of Metallic Films Deposited by Electrolysis , 1909 .

[15]  G. Riontino,et al.  A scanning electrical resistivity (SER) study of phase transformations in an Al-Cu alloy , 1991 .

[16]  F. Haessner Recrystallization of metallic materials , 1978 .

[17]  T. Ozawa,et al.  Kinetic analysis of derivative curves in thermal analysis , 1970 .

[18]  L. F. Mondolfo Aluminum alloys: Structure and properties , 1976 .

[19]  J. D. Mis,et al.  Grain Growth in Al-(Cu, Pd, Nb) Thin Films , 1993 .

[20]  P. Mengucci,et al.  Precipitation of metastable phases in a rapidly quenched Al6wt.%Cu alloy , 1991 .

[21]  K. Schröder CRC handbook of electrical resistivities of binary metallic alloys , 1983 .

[22]  F. Rhines,et al.  Topological evolution of CuAl2 particles during solution heat treatment , 1977 .

[23]  S. J. Rothman,et al.  Impurity Diffusion in Aluminum , 1970 .

[24]  W. Mcbee,et al.  Grain growth in thin aluminum-4% copper alloy films , 1975 .

[25]  M. Starink,et al.  Cooling and heating rate dependence of precipitation in an Al-Cu alloy , 1992 .

[26]  Liu Cheng,et al.  Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites , 1988 .

[27]  Evan G. Colgan,et al.  The role of Cu distribution and Al2Cu precipitation on the electromigration reliability of submicrometer Al(Cu) lines , 1994 .