Rayonnement acoustique dans un fluide en écoulement : analyse mathématique et numérique de l'équation de Galbrun
暂无分享,去创建一个
[1] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[2] E. Turkel,et al. Absorbing PML boundary layers for wave-like equations , 1998 .
[3] Ray Hixon,et al. Evaluation of boundary conditions for computational aeroacoustics , 1995 .
[4] Charles I. Goldstein,et al. A Finite Element Method for Solving Heimholt/ Type Equations in Waveguides and Other Unbounded Domains* , 2010 .
[5] Klaus-Jürgen Bathe,et al. On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .
[6] W.,et al. Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .
[7] J. Bérenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .
[8] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[9] Andreas C. Cangellaris,et al. GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.
[10] S. Candel,et al. ANALYTICAL STUDIES OF SOME ACOUSTIC PROBLEMS OF JET ENGINES , 1972 .
[11] Guillaume Legendre,et al. Analyse mathématique de l'équation de Galbrun en écoulement uniforme , 2001 .
[12] F. Kikuchi. On a discrete compactness property for the Nedelec finite elements , 1989 .
[13] I. Stakgold. Green's Functions and Boundary Value Problems , 1979 .
[14] A. H. Nayfeh,et al. Effect of transverse velocity and temperature gradients on sound attenuation in two-dimensional ducts , 1974 .
[15] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[16] C. Bailly,et al. Numerical Solution of Acoustic Propagation Problems Using linearized Euler's Equations* , 2000 .
[17] The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining II. Bifurcated Ducts , 1980 .
[18] Michael S. Howe,et al. The influence of vortex shedding on the generation of sound by convected turbulence , 1976, Journal of Fluid Mechanics.
[19] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[20] E. Turkel,et al. ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .
[21] Allan D. Pierce,et al. Reflection of Acoustic Pulses from Stable and Instable Interfaces between Moving Fluids , 1969 .
[22] N. Marcuvitz,et al. Electron-stream interaction with plasmas , 1965 .
[23] Thomas Hagstrom,et al. Absorbing Layers and Radiation Boundary Conditions for Jet Flow Simulations , 2002 .
[24] Stanly Steinberg,et al. Meromorphic families of compact operators , 1968 .
[25] C. Tam,et al. Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .
[26] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.
[27] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[28] Brian J. Tester,et al. The propagation and attenuation of sound in lined ducts containing uniform or “plug” flow , 1973 .
[29] Alfredo Bermúdez,et al. Finite element computation of the vibration modes of a fluid—solid system , 1994 .
[30] R. K. Sigman,et al. Determination of Turbofan Inlet Acoustics Using Finite Elements , 1978 .
[31] Robert L. Taylor,et al. Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .
[32] A. Bermúdez,et al. Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .
[33] J. Hesthaven,et al. The Analysis and Construction of Perfectly Matched Layers for Linearized Euler Equations , 2022 .
[34] Christophe Hazard,et al. A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics , 2002, SIAM J. Numer. Anal..
[35] Harold L. Atkins,et al. QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .
[36] Jean-Pierre Berenger,et al. Improved PML for the FDTD solution of wave-structure interaction problems , 1997 .
[37] M. K. Myers,et al. On the acoustic boundary condition in the presence of flow , 1980 .
[38] J. Zolésio,et al. Springer series in Computational Mathematics , 1992 .
[39] S. Rienstra,et al. Sound transmission in slowly varying circular and annular lined ducts with flow , 1998, Journal of Fluid Mechanics.
[40] R. J. Astley,et al. Acoustic Transmission in Non-Uniform Ducts with Mean Flow, Part II: The Finite Element Method , 1981 .
[41] Oleg A. Godin,et al. Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid , 1997 .
[42] Fabien Treyssède,et al. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. , 2003, The Journal of the Acoustical Society of America.
[43] Daniele Boffi,et al. Approximation of grad-div operator in non-convex domains , 1999 .
[44] Vincent Pagneux,et al. ACOUSTIC DIFFRACTION BY A PLATE IN A UNIFORM FLOW , 2002 .
[45] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[46] Martin Costabel,et al. Un rsultat de densit pour les quations de Maxwell rgularises dans un domaine lipschitzien , 1998 .
[47] M. Costabel. A coercive bilinear form for Maxwell's equations , 1991 .
[48] Christine Bernardi,et al. Un résultat de densité pour les équations de Maxwell , 1997 .
[49] Yves Ousset,et al. A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .
[50] A. Bamberger,et al. Mathematical analysis of the guided modes of an optical fiber , 1990 .
[51] F. Brezzi,et al. On the coupling of boundary integral and finite element methods , 1979 .
[52] P. Werner,et al. ON THE EXTERIOR BOUNDARY VALUE PROBLEM OF PERFECT REFLECTION FOR STATIONARY ELECTROMAGNETIC WAVE FIELDS , 1963 .
[53] Shlomo Ta'asan,et al. An absorbing buffer zone technique for acoustic wave propagation , 1995 .
[54] P. Moin,et al. Boundary conditions for direct computation of aerodynamic sound generation , 1993 .
[55] Frank Schmidt,et al. Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..
[56] Israel Michael Sigal,et al. Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .
[57] Vincent Pagneux,et al. INFLUENCE OF LOW MACH NUMBER SHEAR FLOW ON ACOUSTIC PROPAGATION IN DUCTS , 2001 .
[58] A. Cummings,et al. Sound generation and transmission in flow ducts with axial temperature gradients , 1978 .
[59] F. Hu. On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .
[60] Thomas Hagstrom,et al. A COMPARISON OF TWO ACCURATE BOUNDARY TREATMENTS FOR, COMPUTATIONAL AEROACOUSTICS , 1997 .
[61] Patrick Joly,et al. Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .
[62] Patrick Ciarlet,et al. Les équations de Maxwell dans un polyèdre: un résultat de densité , 1998 .
[63] Dolores Gómez Pedreira,et al. A Method for Computing Guided Waves in Integrated Optics. Part I: Mathematical Analysis , 2001, SIAM J. Numer. Anal..
[64] R. F. Lambert,et al. Influence of Shear Flow on Sound Attenuation in a Lined Duct , 1965 .
[65] L. Demkowicz,et al. Maxwell eigenvalues and discrete compactness in two dimensions , 2000 .
[66] Ph. Guillaume,et al. Non-reflecting boundary conditions for waveguides , 1999, Math. Comput..
[67] Walter Eversman,et al. Effect of Boundary Layer on the Transmission and Attenuation of Sound in an Acoustically Treated Circular Duct , 1971 .
[68] K. G. Budden. Wave Propagation , 1969, Nature.
[69] Frank Obermeier,et al. Problems in flow acoustics , 1983 .
[70] Ali H. Nayfeh,et al. Acoustics of Aircraft Engine-Duct Systems , 1975 .
[71] S. Ko,et al. Sound attenuation in acoustically lined circular ducts in the presence of uniform flow and shear flow , 1972 .
[72] Christopher K. W. Tam,et al. Perfectly Matched Layer as an Absorbing Boundary Condition for the Linearized Euler Equations in Open and Ducted Domains , 1998 .
[73] Christophe Hazard,et al. On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .
[74] M. Costabel,et al. Singularities of Maxwell interface problems , 1999 .
[75] D. S. Jones,et al. The instability of a vortex sheet on a subsonic stream under acoustic radiation , 1972, Mathematical Proceedings of the Cambridge Philosophical Society.
[76] Christophe Hazard,et al. A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..
[77] Claus Müller. Electromagnetic Waves in an Inhomogeneous Medium , 1969 .
[78] Christophe Hazard,et al. Numerical simulation of corner singularities: a paradox in Maxwell-like problems , 2002 .
[79] P. Germain,et al. Cours de mécanique des milieux continus , 1973 .
[80] Eli Turkel,et al. Far field boundary conditions for compressible flows , 1982 .
[81] Z. J. Cendes,et al. Combined finite element-modal solution of three-dimensional eddy current problems , 1988 .
[82] A Bossavit,et al. Électromagnétisme, en vue de la modélisation , 1993 .
[83] R. J. Astley,et al. A finite element formulation of the eigenvalue problem in lined ducts with flow , 1979 .
[84] K. Bathe,et al. A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .
[85] Christopher K. W. Tam,et al. Advances in Numerical Boundary Conditions for Computational Aeroacoustics , 1997 .
[86] P. Monk,et al. Optimizing the Perfectly Matched Layer , 1998 .
[87] Walter Eversman,et al. Transmission of Sound in Ducts with Thin Shear Layers—Convergence to the Uniform Flow Case , 1972 .
[88] Lucia Gastaldi,et al. Mixed finite element methods in fluid structure systems , 1996 .
[89] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[90] Walter Eversman,et al. A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts , 2001, Journal of Fluid Mechanics.
[91] Anne-Sophie Bonnet-Ben Dhia,et al. Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..
[92] Peter G. Petropoulos,et al. Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..
[93] P. Mungur,et al. Acoustic wave propagation in a sheared fluid contained in a duct , 1969 .
[94] C. Tam,et al. RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW , 1996 .
[95] Weng Cho Chew,et al. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .
[96] Dan Givoli,et al. A finite element method for large domains , 1989 .
[97] The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining I. Modes in an Infinite Duct , 1980 .
[98] R. Leis. Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien , 1968 .
[99] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[100] Tosio Kato. Perturbation theory for linear operators , 1966 .
[101] D. Givoli. Non-reflecting boundary conditions , 1991 .
[102] D. Pridmore‐Brown,et al. Sound Propagation in a Fluid Flowing through an Attenuating Duct , 1958 .
[103] F. Hu. A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .
[104] D. G. Andrews,et al. On wave-action and its relatives , 1978, Journal of Fluid Mechanics.
[105] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[106] G. Elias,et al. Finite-element method to study harmonic aeroacoustics problems , 2001 .
[107] J. Aubin. Approximation of Elliptic Boundary-Value Problems , 1980 .
[108] Walter Eversman,et al. Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem , 1995 .
[109] Michael B. Giles,et al. Nonreflecting boundary conditions for Euler equation calculations , 1990 .
[110] Mabrouk Ben Tahar,et al. Propagation et rayonnement acoustique en présence d'un écoulement non uniforme par une méthode de couplage FEM/BEM , 1999 .
[111] Peter Monk,et al. The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..
[112] W. D. Hayes,et al. Conservation of action and modal wave action , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[113] Patrick Ciarlet,et al. Résolution des équations de Maxwell instationnaires avec charges dans un domaine singulier bidimensionnel , 2000 .
[114] Armel de La Bourdonnaye,et al. Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism , 1995 .
[115] Harry E. Plumblee,et al. The Generation and Radiation of Supersonic Jet Noise. Volume 2. Studies of Jet Noise, Turbulence Structure and Laser Velocimetry , 1976 .
[116] Samuel P. Marin,et al. Variational methods for underwater acoustic problems , 1978 .
[117] D. Gottlieb,et al. Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .
[118] A. Bermúdez,et al. Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides , 1992 .
[119] Andreas C. Cangellaris,et al. GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, IMS 1996.
[120] Roger Ohayon,et al. Interactions fluides-structures , 1992 .
[121] Christopher K. W. Tarn,et al. Computational Aeroacoustics: Issues and Methods , 1995 .
[122] Börje Einar Nilsson. The propagation of sound in cylindrical ducts with mean flow and bulk-reacting lining , 1980 .
[123] E. A. Frieman,et al. An energy principle for hydromagnetic stability problems , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[124] C. Bogey,et al. Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .
[125] B. Nilsson,et al. The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining IV. Several Interacting Discontinuities , 1981 .
[126] J. Rappaz,et al. Finite element methods in linear ideal magnetohydrodynamics , 1985 .
[127] M. Birman,et al. L2-Theory of the Maxwell operator in arbitrary domains , 1987 .
[128] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[129] Marc Lenoir,et al. The Localized Finite Element Method and Its Application to the Two-Dimensional Sea-Keeping Problem , 1988 .