Rayonnement acoustique dans un fluide en écoulement : analyse mathématique et numérique de l'équation de Galbrun

Les travaux de cette these concernent la simulation numerique de la propagation acoustique dans un fluide en ecoulement, en regime periodique etabli. Le modele retenu est l'equation de Galbrun, qui modelise la propagation lineaire d'ondes en presence d'un ecoulement de fluide parfait en evolution adiabatique et porte sur le deplacement lagrangien. L'analyse mathematique montre qu'une methode d'elements finis nodaux ne permet pas, en general, d'approcher la solution de l'equation, les resultats etant alors fortement pollues par des modes numeriques "parasites". Dans la premiere partie de la these, nous proposons une methode de regularisation de l'equation pour laquelle nous prouvons la convergence d'une approximation par elements finis nodaux pour des problemes de diffraction dans un conduit en presence d'ecoulements subsoniques uniforme ou cisaille. La deuxieme partie du document est consacree a la construction et l'etude de couches absorbantes parfaitement adaptees, dites PML, pour le rayonnement d'une source localisee en presence d'un ecoulement uniforme et dans un conduit. Nous traitons successivement le cas d'une source irrotationnelle, qui conduit a un probleme scalaire, et celui d'une source quelconque. Un principe d'absorption limite est etabli dans le cas general et nous demontrons un resultat de convergence exponentielle de la methode de PML en fonction de la longueur des couches. Des resultats numeriques illustrant ces approches sont presentes.

[1]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[2]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[3]  Ray Hixon,et al.  Evaluation of boundary conditions for computational aeroacoustics , 1995 .

[4]  Charles I. Goldstein,et al.  A Finite Element Method for Solving Heimholt/ Type Equations in Waveguides and Other Unbounded Domains* , 2010 .

[5]  Klaus-Jürgen Bathe,et al.  On Mixed Elements for Acoustic Fluid-Structure Interactions , 1997 .

[6]  W.,et al.  Time Dependent Boundary Conditions for Hyperbolic Systems , 2003 .

[7]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[8]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[9]  Andreas C. Cangellaris,et al.  GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, 1996 IEEE MTT-S International Microwave Symposium Digest.

[10]  S. Candel,et al.  ANALYTICAL STUDIES OF SOME ACOUSTIC PROBLEMS OF JET ENGINES , 1972 .

[11]  Guillaume Legendre,et al.  Analyse mathématique de l'équation de Galbrun en écoulement uniforme , 2001 .

[12]  F. Kikuchi On a discrete compactness property for the Nedelec finite elements , 1989 .

[13]  I. Stakgold Green's Functions and Boundary Value Problems , 1979 .

[14]  A. H. Nayfeh,et al.  Effect of transverse velocity and temperature gradients on sound attenuation in two-dimensional ducts , 1974 .

[15]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[16]  C. Bailly,et al.  Numerical Solution of Acoustic Propagation Problems Using linearized Euler's Equations* , 2000 .

[17]  The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining II. Bifurcated Ducts , 1980 .

[18]  Michael S. Howe,et al.  The influence of vortex shedding on the generation of sound by convected turbulence , 1976, Journal of Fluid Mechanics.

[19]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[20]  E. Turkel,et al.  ANALYTICAL AND NUMERICAL STUDIES OF A FINITE ELEMENT PML FOR THE HELMHOLTZ EQUATION , 2000 .

[21]  Allan D. Pierce,et al.  Reflection of Acoustic Pulses from Stable and Instable Interfaces between Moving Fluids , 1969 .

[22]  N. Marcuvitz,et al.  Electron-stream interaction with plasmas , 1965 .

[23]  Thomas Hagstrom,et al.  Absorbing Layers and Radiation Boundary Conditions for Jet Flow Simulations , 2002 .

[24]  Stanly Steinberg,et al.  Meromorphic families of compact operators , 1968 .

[25]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[26]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[27]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[28]  Brian J. Tester,et al.  The propagation and attenuation of sound in lined ducts containing uniform or “plug” flow , 1973 .

[29]  Alfredo Bermúdez,et al.  Finite element computation of the vibration modes of a fluid—solid system , 1994 .

[30]  R. K. Sigman,et al.  Determination of Turbofan Inlet Acoustics Using Finite Elements , 1978 .

[31]  Robert L. Taylor,et al.  Vibration analysis of fluid-solid systems using a finite element displacement formulation , 1990 .

[32]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[33]  J. Hesthaven,et al.  The Analysis and Construction of Perfectly Matched Layers for Linearized Euler Equations , 2022 .

[34]  Christophe Hazard,et al.  A Singular Field Method for Maxwell's Equations: Numerical Aspects for 2D Magnetostatics , 2002, SIAM J. Numer. Anal..

[35]  Harold L. Atkins,et al.  QUADRATURE-FREE IMPLEMENTATION OF DISCONTINUOUS GALERKIN METHOD FOR HYPERBOLIC EQUATIONS , 1996 .

[36]  Jean-Pierre Berenger,et al.  Improved PML for the FDTD solution of wave-structure interaction problems , 1997 .

[37]  M. K. Myers,et al.  On the acoustic boundary condition in the presence of flow , 1980 .

[38]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[39]  S. Rienstra,et al.  Sound transmission in slowly varying circular and annular lined ducts with flow , 1998, Journal of Fluid Mechanics.

[40]  R. J. Astley,et al.  Acoustic Transmission in Non-Uniform Ducts with Mean Flow, Part II: The Finite Element Method , 1981 .

[41]  Oleg A. Godin,et al.  Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid , 1997 .

[42]  Fabien Treyssède,et al.  A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description. , 2003, The Journal of the Acoustical Society of America.

[43]  Daniele Boffi,et al.  Approximation of grad-div operator in non-convex domains , 1999 .

[44]  Vincent Pagneux,et al.  ACOUSTIC DIFFRACTION BY A PLATE IN A UNIFORM FLOW , 2002 .

[45]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[46]  Martin Costabel,et al.  Un rsultat de densit pour les quations de Maxwell rgularises dans un domaine lipschitzien , 1998 .

[47]  M. Costabel A coercive bilinear form for Maxwell's equations , 1991 .

[48]  Christine Bernardi,et al.  Un résultat de densité pour les équations de Maxwell , 1997 .

[49]  Yves Ousset,et al.  A displacement method for the analysis of vibrations of coupled fluid-structure systems , 1978 .

[50]  A. Bamberger,et al.  Mathematical analysis of the guided modes of an optical fiber , 1990 .

[51]  F. Brezzi,et al.  On the coupling of boundary integral and finite element methods , 1979 .

[52]  P. Werner,et al.  ON THE EXTERIOR BOUNDARY VALUE PROBLEM OF PERFECT REFLECTION FOR STATIONARY ELECTROMAGNETIC WAVE FIELDS , 1963 .

[53]  Shlomo Ta'asan,et al.  An absorbing buffer zone technique for acoustic wave propagation , 1995 .

[54]  P. Moin,et al.  Boundary conditions for direct computation of aerodynamic sound generation , 1993 .

[55]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[56]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[57]  Vincent Pagneux,et al.  INFLUENCE OF LOW MACH NUMBER SHEAR FLOW ON ACOUSTIC PROPAGATION IN DUCTS , 2001 .

[58]  A. Cummings,et al.  Sound generation and transmission in flow ducts with axial temperature gradients , 1978 .

[59]  F. Hu On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .

[60]  Thomas Hagstrom,et al.  A COMPARISON OF TWO ACCURATE BOUNDARY TREATMENTS FOR, COMPUTATIONAL AEROACOUSTICS , 1997 .

[61]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[62]  Patrick Ciarlet,et al.  Les équations de Maxwell dans un polyèdre: un résultat de densité , 1998 .

[63]  Dolores Gómez Pedreira,et al.  A Method for Computing Guided Waves in Integrated Optics. Part I: Mathematical Analysis , 2001, SIAM J. Numer. Anal..

[64]  R. F. Lambert,et al.  Influence of Shear Flow on Sound Attenuation in a Lined Duct , 1965 .

[65]  L. Demkowicz,et al.  Maxwell eigenvalues and discrete compactness in two dimensions , 2000 .

[66]  Ph. Guillaume,et al.  Non-reflecting boundary conditions for waveguides , 1999, Math. Comput..

[67]  Walter Eversman,et al.  Effect of Boundary Layer on the Transmission and Attenuation of Sound in an Acoustically Treated Circular Duct , 1971 .

[68]  K. G. Budden Wave Propagation , 1969, Nature.

[69]  Frank Obermeier,et al.  Problems in flow acoustics , 1983 .

[70]  Ali H. Nayfeh,et al.  Acoustics of Aircraft Engine-Duct Systems , 1975 .

[71]  S. Ko,et al.  Sound attenuation in acoustically lined circular ducts in the presence of uniform flow and shear flow , 1972 .

[72]  Christopher K. W. Tam,et al.  Perfectly Matched Layer as an Absorbing Boundary Condition for the Linearized Euler Equations in Open and Ducted Domains , 1998 .

[73]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[74]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[75]  D. S. Jones,et al.  The instability of a vortex sheet on a subsonic stream under acoustic radiation , 1972, Mathematical Proceedings of the Cambridge Philosophical Society.

[76]  Christophe Hazard,et al.  A Singular Field Method for the Solution of Maxwell's Equations in Polyhedral Domains , 1999, SIAM J. Appl. Math..

[77]  Claus Müller Electromagnetic Waves in an Inhomogeneous Medium , 1969 .

[78]  Christophe Hazard,et al.  Numerical simulation of corner singularities: a paradox in Maxwell-like problems , 2002 .

[79]  P. Germain,et al.  Cours de mécanique des milieux continus , 1973 .

[80]  Eli Turkel,et al.  Far field boundary conditions for compressible flows , 1982 .

[81]  Z. J. Cendes,et al.  Combined finite element-modal solution of three-dimensional eddy current problems , 1988 .

[82]  A Bossavit,et al.  Électromagnétisme, en vue de la modélisation , 1993 .

[83]  R. J. Astley,et al.  A finite element formulation of the eigenvalue problem in lined ducts with flow , 1979 .

[84]  K. Bathe,et al.  A mixed displacement-based finite element formulation for acoustic fluid-structure interaction , 1995 .

[85]  Christopher K. W. Tam,et al.  Advances in Numerical Boundary Conditions for Computational Aeroacoustics , 1997 .

[86]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[87]  Walter Eversman,et al.  Transmission of Sound in Ducts with Thin Shear Layers—Convergence to the Uniform Flow Case , 1972 .

[88]  Lucia Gastaldi,et al.  Mixed finite element methods in fluid structure systems , 1996 .

[89]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[90]  Walter Eversman,et al.  A numerical comparison between the multiple-scales and finite-element solution for sound propagation in lined flow ducts , 2001, Journal of Fluid Mechanics.

[91]  Anne-Sophie Bonnet-Ben Dhia,et al.  Perfectly Matched Layers for the Convected Helmholtz Equation , 2004, SIAM J. Numer. Anal..

[92]  Peter G. Petropoulos,et al.  Reflectionless Sponge Layers as Absorbing Boundary Conditions for the Numerical Solution of Maxwell Equations in Rectangular, Cylindrical, and Spherical Coordinates , 2000, SIAM J. Appl. Math..

[93]  P. Mungur,et al.  Acoustic wave propagation in a sheared fluid contained in a duct , 1969 .

[94]  C. Tam,et al.  RADIATION AND OUTFLOW BOUNDARY CONDITIONS FOR DIRECT COMPUTATION OF ACOUSTIC AND FLOW DISTURBANCES IN A NONUNIFORM MEAN FLOW , 1996 .

[95]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[96]  Dan Givoli,et al.  A finite element method for large domains , 1989 .

[97]  The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining I. Modes in an Infinite Duct , 1980 .

[98]  R. Leis Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Medien , 1968 .

[99]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .

[100]  Tosio Kato Perturbation theory for linear operators , 1966 .

[101]  D. Givoli Non-reflecting boundary conditions , 1991 .

[102]  D. Pridmore‐Brown,et al.  Sound Propagation in a Fluid Flowing through an Attenuating Duct , 1958 .

[103]  F. Hu A Stable, perfectly matched layer for linearized Euler equations in unslit physical variables , 2001 .

[104]  D. G. Andrews,et al.  On wave-action and its relatives , 1978, Journal of Fluid Mechanics.

[105]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[106]  G. Elias,et al.  Finite-element method to study harmonic aeroacoustics problems , 2001 .

[107]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[108]  Walter Eversman,et al.  Improved Finite Element Modeling of the Turbofan Engine Inlet Radiation Problem , 1995 .

[109]  Michael B. Giles,et al.  Nonreflecting boundary conditions for Euler equation calculations , 1990 .

[110]  Mabrouk Ben Tahar,et al.  Propagation et rayonnement acoustique en présence d'un écoulement non uniforme par une méthode de couplage FEM/BEM , 1999 .

[111]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[112]  W. D. Hayes,et al.  Conservation of action and modal wave action , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[113]  Patrick Ciarlet,et al.  Résolution des équations de Maxwell instationnaires avec charges dans un domaine singulier bidimensionnel , 2000 .

[114]  Armel de La Bourdonnaye,et al.  Some formulations coupling finite element and integral equation methods for Helmholtz equation and electromagnetism , 1995 .

[115]  Harry E. Plumblee,et al.  The Generation and Radiation of Supersonic Jet Noise. Volume 2. Studies of Jet Noise, Turbulence Structure and Laser Velocimetry , 1976 .

[116]  Samuel P. Marin,et al.  Variational methods for underwater acoustic problems , 1978 .

[117]  D. Gottlieb,et al.  Regular Article: Well-posed Perfectly Matched Layers for Advective Acoustics , 1999 .

[118]  A. Bermúdez,et al.  Mathematical analysis of a finite element method without spurious solutions for computation of dielectric waveguides , 1992 .

[119]  Andreas C. Cangellaris,et al.  GT-PML: generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids , 1996, IMS 1996.

[120]  Roger Ohayon,et al.  Interactions fluides-structures , 1992 .

[121]  Christopher K. W. Tarn,et al.  Computational Aeroacoustics: Issues and Methods , 1995 .

[122]  Börje Einar Nilsson The propagation of sound in cylindrical ducts with mean flow and bulk-reacting lining , 1980 .

[123]  E. A. Frieman,et al.  An energy principle for hydromagnetic stability problems , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[124]  C. Bogey,et al.  Computation of Flow Noise Using Source Terms in Linearized Euler's Equations , 2000 .

[125]  B. Nilsson,et al.  The Propagation of Sound in Cylindrical Ducts with Mean Flow and Bulk-reacting Lining IV. Several Interacting Discontinuities , 1981 .

[126]  J. Rappaz,et al.  Finite element methods in linear ideal magnetohydrodynamics , 1985 .

[127]  M. Birman,et al.  L2-Theory of the Maxwell operator in arbitrary domains , 1987 .

[128]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[129]  Marc Lenoir,et al.  The Localized Finite Element Method and Its Application to the Two-Dimensional Sea-Keeping Problem , 1988 .