Chaos synchronization of a fractional nonautonomous system

Abstract In this paper we investigate the dynamic behavior of a nonautonomous fractional-order biological system.With the stability criterion of active nonlinear fractional systems, the synchronization of the studied chaotic system is obtained. On the other hand, using a Phase-Locked-Loop (PLL) analogy we synchronize the same system. The numerical results demonstrate the efiectiveness of the proposed methods

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[3]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[4]  Luigi Fortuna,et al.  Control and Synchronization of Fractional{Order Dierential Equations of Phase{Locked Loop , 2012 .

[5]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[6]  P. Woafo,et al.  Bifurcations in a birhythmic biological system with time-delayed noise , 2013 .

[7]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[8]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[9]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[10]  W. Hongwu Chaos Control and Synchronization of a Fractional-order Autonomous System , 2012 .

[11]  H. Fröhlich,et al.  Theoretical Physics and Biology , 1988 .

[12]  T. M. Wu Quantum mechanical concepts of coherent states in biological systems , 1996 .

[13]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[14]  J. B. Chabi Orou,et al.  Nonlinear dynamics and strange attractors in the biological system , 2007 .

[15]  Er-Wei Bai,et al.  Synchronization of two Lorenz systems using active control , 1997 .

[16]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[17]  Er-Wei Bai,et al.  Synchronization of the unified chaotic systems via active control , 2006 .

[18]  张超,et al.  Synchronization between two different chaotic systems with nonlinear feedback control , 2007 .

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  Mohammad Haeri,et al.  Synchronizing different chaotic systems using active sliding mode control , 2007 .

[21]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[22]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[23]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[24]  H. Fröhlich Long-range coherence and energy storage in biological systems , 1968 .

[25]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[26]  Emad Ali,et al.  Control and Synchronization of Chaos in Biological Systems Via Backsteping Design , 2011 .

[27]  Fr. Kaiser Coherent Oscillations in Biological Systems I , 1978 .

[28]  Coherent Oscillations in Biological Systems II Limit Cycle Collapse and the Onset of Travelling Waves in Fröhlich's Brain Wave Model , 1978 .

[29]  Maokang Luo,et al.  Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control , 2012 .

[30]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.