Fault detection and fault-tolerant control of interior permanent-magnet motor drive system for electric vehicle

This work presents a control strategy that provides fault tolerance to the major sensor faults which may occur in an interior-permanent-magnet-motor (IPMM)-based electric vehicle propulsion drive system. Failures of a position sensor, a dc-link voltage sensor, and current sensors are all included in the study assuming no multiple faults. For each possible sensor fault, a corresponding method of detection or diagnosis is provided. Additionally, once the fault is detected, the control scheme is automatically reconfigured to provide post-fault operational capability. A state observer is used to provide missing current information in the case of current sensor faults. Experimental results demonstrate the effectiveness of both the fault detection algorithm and the reconfigurable control scheme. The resulting IPMM drive system proves to be resilient to sensor failures while providing smooth transition to the post-fault operational mode.

[1]  M. Sanada,et al.  Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[2]  Thomas M. Jahns,et al.  Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives , 1986, IEEE Transactions on Industry Applications.

[3]  Jung-Ik Ha,et al.  Sensorless rotor position estimation of an interior permanent-magnet motor from initial states , 2003 .

[4]  Heung-Geun Kim,et al.  Improvement of control characteristics of interior permanent magnet synchronous motor for electric vehicle , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[5]  C. Thybo,et al.  Fault-tolerant control of induction motor drive applications , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[6]  Seung-Ki Sul,et al.  Analysis and compensation of current measurement error in vector controlled AC motor drives , 1996, IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting.

[7]  Jung-Ik Ha,et al.  Sensorless position control and initial position estimation of an interior permanent magnet motor , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[8]  R.D. Lorenz,et al.  Sensorless control of interior permanent magnet machine drives with zero-phase-lag position estimation , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[9]  Babak Fahimi,et al.  Fault tolerant operation of induction motor drives with automatic controller reconfiguration , 2001, IEMDC 2001. IEEE International Electric Machines and Drives Conference (Cat. No.01EX485).

[10]  A. El-Antably,et al.  System simulation of fault conditions in the components of the electric drive system of an electric vehicle or an industrial drive , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[11]  N. Retiere,et al.  Vector based investigation of induction motor drive under inverter fault operations , 1997, PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972.

[12]  Thomas M. Jahns,et al.  IPM synchronous machine drive response to a single-phase open circuit fault , 2001, APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181).

[13]  Yoji Takeda,et al.  Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.