Domain-wall structure of a classical Heisenberg ferromagnet on a Möbius strip

We study theoretically the structure of domain walls in ferromagnetic states on M\"obius strips. A two-dimensional classical Heisenberg ferromagnet with single-site anisotropy is treated within a mean-field approximation by taking into account the boundary condition to realize the M\"obius geometry. It is found that two types of domain walls can be formed, namely, parallel or perpendicular to the circumference, and that the relative stability of these domain walls is sensitive to the change in temperature and an applied magnetic field. The magnetization has a discontinuity as a function of temperature and the external field.

[1]  M. Hayashi,et al.  Mixed state of charge-density waves in ring-shaped single crystals , 2007, cond-mat/0703107.

[2]  M. Hayashi,et al.  Geometrically frustrated crystals : Elastic theory and dislocations , 2006, cond-mat/0601504.

[3]  K. Nemoto,et al.  Nonequilibrium relaxation analysis of a quasi-one-dimensional frustrated xy model for charge-density waves in ring-shaped crystals , 2005, cond-mat/0511326.

[4]  M. Hayashi,et al.  Superconductivity on a Möbius strip: Numerical studies of order parameter and quasiparticles , 2005, cond-mat/0502149.

[5]  K. Harigaya,et al.  Magnetic Structure of Nano-Graphite Möbius Ribbon , 2002, cond-mat/0210685.

[6]  Y. Avishai,et al.  Persistent currents in Möbius strips , 2002, cond-mat/0203366.

[7]  M. Hayashi,et al.  Little-Parks Oscillation of Superconducting Möbius Strip , 2001, cond-mat/0107492.

[8]  Y. Okabe,et al.  Finite-size scaling for the ising model on the Möbius strip and the klein bottle. , 2001, Physical review letters.

[9]  K. Matsuda,et al.  Charge-density-wave sliding in ring-shaped crystals of NbSe3 , 2000 .

[10]  S. Yasuzuka,et al.  Single-crystal rings of NbSe3: a system for CDW interference? , 2000 .

[11]  S. Tanda,et al.  Ring-shaped crystals of NbSe3 and TaSe3 , 1999 .

[12]  F. Mila,et al.  Persistent currents in a Möbius ladder: A test of interchain coherence of interacting electrons , 1997, cond-mat/9705119.

[13]  S. Chikazumi Physics of ferromagnetism , 1997 .

[14]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .