Synchronization of Electrically Coupled Resonate-and-Fire Neurons

Electrical coupling between neurons is broadly present across brain areas and is typically assumed to synchronize network activity. However, intrinsic properties of the coupled cells can complicate this simple picture. Many cell types with electrical coupling show a diversity of post-spike subthreshold fluctuations, often linked to subthreshold resonance, which are transmitted through electrical synapses in addition to action potentials. Using the theory of weakly coupled oscillators, we explore the effect of both subthreshold and spike-mediated coupling on synchrony in small networks of electrically coupled resonate-and-fire neurons, a hybrid neuron model with damped subthreshold oscillations and a range of post-spike voltage dynamics. We calculate the phase response curve using an extension of the adjoint method that accounts for the discontinuous post-spike reset rule. We find that both spikes and subthreshold fluctuations can jointly promote synchronization. The subthreshold contribution is strongest when the voltage exhibits a significant post-spike elevation in voltage, or plateau potential. Additionally, we show that the geometry of trajectories approaching the spiking threshold causes a "reset-induced shear" effect that can oppose synchrony in the presence of network asymmetry, despite having no effect on the phase-locking of symmetrically coupled pairs.

[1]  Ernst Niebur,et al.  A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors , 2009, Neural Computation.

[2]  Stephen Coombes,et al.  Nonsmooth dynamics in spiking neuron models , 2012 .

[3]  H. Chiel,et al.  The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems , 2016, European Journal of Applied Mathematics.

[4]  John Rinzel,et al.  Synchronization of Electrically Coupled Pairs of Inhibitory Interneurons in Neocortex , 2007, The Journal of Neuroscience.

[5]  D. Hansel,et al.  How Spike Generation Mechanisms Determine the Neuronal Response to Fluctuating Inputs , 2003, The Journal of Neuroscience.

[6]  Y. Kuramoto,et al.  A Soluble Active Rotater Model Showing Phase Transitions via Mutual Entertainment , 1986 .

[7]  J. Rinzel,et al.  Rhythmogenic effects of weak electrotonic coupling in neuronal models. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Ermentrout,et al.  Multiple pulse interactions and averaging in systems of coupled neural oscillators , 1991 .

[9]  Germán Mato,et al.  On Numerical Simulations of Integrate-and-Fire Neural Networks , 1998, Neural Computation.

[10]  S. Gurevich,et al.  Turbulence in the Ott–Antonsen equation for arrays of coupled phase oscillators , 2015 .

[11]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[12]  Wulfram Gerstner,et al.  Firing patterns in the adaptive exponential integrate-and-fire model , 2008, Biological Cybernetics.

[13]  Wulfram Gerstner,et al.  Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. , 2005, Journal of neurophysiology.

[14]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[15]  Y. Kuramoto Collective synchronization of pulse-coupled oscillators and excitable units , 1991 .

[16]  Sven Blankenburg,et al.  Information filtering in resonant neurons , 2015, Journal of Computational Neuroscience.

[17]  P. Bressloff,et al.  Mode locking and Arnold tongues in integrate-and-fire neural oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Azadeh Khajeh Alijani Mode locking in a periodically forced resonate-and-fire neuron model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.

[20]  Eugene M. Izhikevich,et al.  Simple model of spiking neurons , 2003, IEEE Trans. Neural Networks.

[21]  G. Ermentrout,et al.  Amplitude response of coupled oscillators , 1990 .

[22]  A. Treves Mean-field analysis of neuronal spike dynamics , 1993 .

[23]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[24]  Jan R Engelbrecht,et al.  Dynamical phase transitions in periodically driven model neurons. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Aman Behal,et al.  Maximum likelihood parameter estimation in a stochastic resonate-and-fire neuronal model , 2011, 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (ICCABS).

[26]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[27]  E. J. Lang,et al.  Inferior Olive Oscillations Gate Transmission of Motor Cortical Activity to the Cerebellum , 2004, The Journal of Neuroscience.

[28]  Sho Shirasaka,et al.  Phase reduction theory for hybrid nonlinear oscillators. , 2016, Physical review. E.

[29]  Jonathan Touboul,et al.  Spiking Dynamics of Bidimensional Integrate-and-Fire Neurons , 2009, SIAM J. Appl. Dyn. Syst..

[30]  Wulfram Gerstner,et al.  Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. , 2004, Journal of neurophysiology.

[31]  G. V. Kamenkov,et al.  The stability of periodic motions , 1967 .

[32]  A. Hill Excitation and Accommodation in Nerve , 1936 .

[33]  Antony W. Goodwin,et al.  ELECTRICAL SYNAPSES IN THE MAMMALIAN BRAIN , 2010 .

[34]  N. Rashevsky,et al.  Outline of a physico-mathematical theory of excitation and inhibition , 1933, Protoplasma.

[35]  S Coombes,et al.  Dynamics of synaptically coupled integrate-and-fire-or-burst neurons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[37]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[38]  E. Marder,et al.  The effect of electrical coupling on the frequency of model neuronal oscillators. , 1990, Science.

[39]  Masato Okada,et al.  Globally Coupled Resonate-and-Fire Models , 2006 .

[40]  David Golomb,et al.  The Number of Synaptic Inputs and the Synchrony of Large, Sparse Neuronal Networks , 2000, Neural Computation.

[41]  Carlo R Laing,et al.  Partially coherent twisted states in arrays of coupled phase oscillators. , 2014, Chaos.

[42]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[43]  Dan Wilson,et al.  Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers. , 2019, Physical review. E.

[44]  L. F Abbott,et al.  Lapicque’s introduction of the integrate-and-fire model neuron (1907) , 1999, Brain Research Bulletin.

[45]  Michael A. Schwemmer,et al.  The Theory of Weakly Coupled Oscillators , 2012 .

[46]  Angelo Di Garbo,et al.  Dynamical Behavior of the linearized Version of the FitzHugh-Nagumo Neural Model , 2001, Int. J. Bifurc. Chaos.

[47]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[48]  M. Okada,et al.  Pulse-coupled resonate-and-fire models. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Tatiana A. Engel,et al.  Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. , 2008, Journal of neurophysiology.

[50]  Simona Olmi,et al.  Collective dynamics in sparse networks. , 2012, Physical review letters.

[51]  Carlo R. Laing,et al.  The dynamics of chimera states in heterogeneous Kuramoto networks , 2009 .

[52]  Gaylord Young,et al.  Note on excitation theories , 1937 .

[53]  Shigeru Shinomoto,et al.  Mutual Entrainment in Oscillator Lattices with Nonvariational Type Interaction , 1988 .

[54]  Perry L. Miller,et al.  Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience , 2016, Journal of Computational Neuroscience.

[55]  U. Heinemann,et al.  Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold , 2004, The Journal of physiology.

[56]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[57]  Michael A. Schwemmer,et al.  Bistability in a Leaky Integrate-and-Fire Neuron with a Passive Dendrite , 2012, SIAM J. Appl. Dyn. Syst..

[59]  Leon Glass,et al.  The Shape of Phase-Resetting Curves in Oscillators with a Saddle Node on an Invariant Circle Bifurcation , 2012, Neural Computation.

[60]  Eugene M. Izhikevich,et al.  Phase Equations for Relaxation Oscillators , 2000, SIAM J. Appl. Math..

[61]  KAZUKI NAKADA,et al.  Burst Synchronization and Chaotic Phenomena in Two Strongly Coupled Resonate-and-Fire Neurons , 2008, Int. J. Bifurc. Chaos.

[62]  Stephen Coombes,et al.  Gap Junctions and Emergent Rhythms , 2009 .

[63]  Yi Dong,et al.  Estimating Parameters of Generalized Integrate-and-Fire Neurons from the Maximum Likelihood of Spike Trains , 2011, Neural Computation.

[64]  G. Ermentrout n:m Phase-locking of weakly coupled oscillators , 1981 .

[65]  Charles J. Wilson,et al.  Effect of Sharp Jumps at the Edges of Phase Response Curves on Synchronization of Electrically Coupled Neuronal Oscillators , 2013, PloS one.

[66]  Emilio Freire,et al.  Melnikov theory for a class of planar hybrid systems , 2013 .

[67]  Pablo Varona,et al.  Spike timing-dependent plasticity is affected by the interplay of intrinsic and network oscillations , 2010, Journal of Physiology-Paris.

[68]  G. Hoge,et al.  Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. , 2013, Biochimica et biophysica acta.

[69]  G. Bard Ermentrout,et al.  Phase Response Curves to Measure Ion Channel Effects on Neurons , 2012 .

[70]  G. Ermentrout,et al.  Frequency Plateaus in a Chain of Weakly Coupled Oscillators, I. , 1984 .

[71]  G. Ermentrout,et al.  Phase-response curves give the responses of neurons to transient inputs. , 2005, Journal of neurophysiology.

[72]  Frances K. Skinner,et al.  Understanding Activity in Electrically Coupled Networks Using PRCs and the Theory of Weakly Coupled Oscillators , 2012 .

[73]  Klaus Obermayer,et al.  Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons , 2012, PLoS Comput. Biol..

[74]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[75]  Ramana Dodla,et al.  Effect of Phase Response Curve Skewness on Synchronization of Electrically Coupled Neuronal Oscillators , 2013, Neural Computation.

[76]  Eugene M. Izhikevich,et al.  Which model to use for cortical spiking neurons? , 2004, IEEE Transactions on Neural Networks.

[77]  M. Wolfrum,et al.  Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model. , 2012, Physical review letters.

[78]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[79]  Germán Mato,et al.  Synchrony in Heterogeneous Networks of Spiking Neurons , 2000, Neural Computation.

[80]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[81]  T. Verechtchaguina,et al.  Interspike interval densities of resonate and fire neurons , 2007, Biosyst..

[82]  G. Ermentrout,et al.  Chapter 1 - Mechanisms of Phase-Locking and Frequency Control in Pairs of Coupled Neural Oscillators* , 2002 .

[83]  Boris S. Gutkin,et al.  The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons , 2009, Journal of Computational Neuroscience.

[84]  Nicolas Brunel,et al.  Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron , 2003, Neural Computation.

[85]  D. Condorelli,et al.  Functional Properties of Channels Formed by the Neuronal Gap Junction Protein Connexin36 , 1999, The Journal of Neuroscience.

[86]  Josef Ladenbauer,et al.  Adaptation controls synchrony and cluster states of coupled threshold-model neurons. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Stephen Coombes,et al.  Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience , 2015, The Journal of Mathematical Neuroscience.

[88]  Germán Mato,et al.  Electrical Synapses and Synchrony: The Role of Intrinsic Currents , 2003, The Journal of Neuroscience.

[89]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[90]  Eugene M. Izhikevich,et al.  Resonate-and-fire neurons , 2001, Neural Networks.

[91]  J. Moehlis,et al.  Isostable reduction of periodic orbits. , 2016, Physical review. E.

[92]  Carson C. Chow,et al.  Dynamics of Spiking Neurons with Electrical Coupling , 2000, Neural Computation.

[93]  Stephen Coombes,et al.  Phase-Amplitude Descriptions of Neural Oscillator Models , 2013, Journal of mathematical neuroscience.

[94]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[95]  N. Brunel,et al.  From subthreshold to firing-rate resonance. , 2003, Journal of neurophysiology.

[96]  Maxim Bazhenov,et al.  Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo , 2004, The European journal of neuroscience.

[97]  Boris S. Gutkin,et al.  The Effects of Spike Frequency Adaptation and Negative Feedback on the Synchronization of Neural Oscillators , 2001, Neural Computation.

[98]  D. Abrams,et al.  Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators , 2014, 1403.6204.

[99]  M. V. Rossum,et al.  Quantitative investigations of electrical nerve excitation treated as polarization , 2007, Biological Cybernetics.

[100]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[101]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[102]  Nicolas Brunel,et al.  Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[104]  Ernst Niebur,et al.  Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons , 2013, SIAM J. Appl. Dyn. Syst..

[105]  Germán Mato,et al.  Synchrony in Excitatory Neural Networks , 1995, Neural Computation.

[106]  S. Sherman,et al.  Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. , 2000, Journal of neurophysiology.

[107]  A. Zients Andy , 2003 .

[108]  B. Ermentrout,et al.  Greater accuracy and broadened applicability of phase reduction using isostable coordinates , 2018, Journal of mathematical biology.

[109]  G. Ermentrout,et al.  Parabolic bursting in an excitable system coupled with a slow oscillation , 1986 .

[110]  Christof Koch,et al.  Generalized leaky integrate-and-fire models classify multiple neuron types , 2017, Nature Communications.

[111]  G. Bard Ermentrout,et al.  Synchronization in a pool of mutually coupled oscillators with random frequencies , 1985 .

[112]  Nicolas Brunel,et al.  Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities , 2009, Journal of Computational Neuroscience.

[113]  板橋 清巳 Resonance , 1962 .

[114]  G. Ermentrout,et al.  Symmetry and phaselocking in chains of weakly coupled oscillators , 1986 .