Crossover from exciton-polariton condensation to photon lasing in an optical trap.

Optical trapping has been proven to be an effective method of separating exciton-polariton condensates from the incoherent high-energy excitonic reservoir located at the pumping laser position. This technique has significantly improved the coherent properties of exciton-polariton condensates, when compared to a quasi-homogeneous spot excitation scheme. Here, we compare two experimental methods on a sample, where a single spot excitation experiment allowed us only to observe photonic lasing in the weak coupling regime. In contrast, the ring-shaped excitation resulted in the two-threshold behavior, where an exciton-polariton condensate manifests itself at the first and photon lasing at the second threshold. Both lasing regimes are trapped in an optical potential created by the pump. We interpret the origin of this confining potential in terms of repulsive interactions of polaritons with the reservoir at the first threshold and as a result of the excessive free-carrier induced refractive index change of the microcavity at the second threshold. This observation offers a way to achieve multiple phases of photonic condensates in samples, e.g., containing novel materials as an active layer, where two-threshold behavior is impossible to achieve with a single excitation spot.

[1]  W. Vos,et al.  Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers , 2021, Light, science & applications.

[2]  W. Vos,et al.  Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers , 2021, Light: Science & Applications.

[3]  H. Ohadi,et al.  Ultralong temporal coherence in optically trapped exciton-polariton condensates , 2021, Physical Review B.

[4]  M. Steger,et al.  Low-Energy Collective Oscillations and Bogoliubov Sound in an Exciton-Polariton Condensate. , 2021, Physical review letters.

[5]  S. Brodbeck,et al.  Polariton Laser in the Bardeen-Cooper-Schrieffer Regime , 2021 .

[6]  H. Suchomel,et al.  Bosonic condensation of exciton–polaritons in an atomically thin crystal , 2020, Nature Materials.

[7]  P. Lagoudakis,et al.  Lotka-Volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates , 2020, 2009.05637.

[8]  J. Khurgin Exceptional points in polaritonic cavities and subthreshold Fabry–Perot lasers , 2020 .

[9]  V. Ardizzone,et al.  Observation of Two Thresholds Leading to Polariton Condensation in 2D Hybrid Perovskites , 2020, Advanced Optical Materials.

[10]  Pavlos G. Lagoudakis,et al.  Mechanisms of blueshifts in organic polariton condensates , 2020, Communications Physics.

[11]  Demetrios N. Christodoulides,et al.  Thermodynamic theory of highly multimoded nonlinear optical systems , 2019, Nature Photonics.

[12]  C. Schneider,et al.  Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons , 2019, 1906.02509.

[13]  M. Steger,et al.  Observation of quantum depletion in a non-equilibrium exciton–polariton condensate , 2019, Nature Communications.

[14]  C. Schneider,et al.  Observation of gain-pinned dissipative solitons in a microcavity laser , 2019 .

[15]  J. Suffczyński,et al.  Triple threshold lasing from a photonic trap in a Te/Se-based optical microcavity , 2019, Communications Physics.

[16]  A. Lemaître,et al.  Three-dimensional trapping of light with light in semiconductor planar microcavities , 2018, Physical Review B.

[17]  K. West,et al.  Self-Trapping of Exciton-Polariton Condensates in GaAs Microcavities. , 2018, Physical review letters.

[18]  P. Littlewood,et al.  Non-Hermitian Phase Transition from a Polariton Bose-Einstein Condensate to a Photon Laser. , 2018, Physical review letters.

[19]  M. Steger,et al.  Direct measurement of polariton-polariton interaction strength in the Thomas-Fermi regime of exciton-polariton condensation , 2018, Physical Review B.

[20]  M. Steger,et al.  Effect of optically induced potential on the energy of trapped exciton polaritons below the condensation threshold , 2018, Physical Review B.

[21]  A. Fieramosca,et al.  Interaction and Coherence of a Plasmon–Exciton Polariton Condensate , 2017, ACS Photonics.

[22]  R. Guo,et al.  Bose–Einstein condensation in a plasmonic lattice , 2017, 1706.01528.

[23]  P. Littlewood,et al.  Universal Themes of Bose-Einstein Condensation , 2017 .

[24]  K. West,et al.  Stable switching among high-order modes in polariton condensates , 2016, 1602.03024.

[25]  S. Höfling,et al.  High-energy side-peak emission of exciton-polariton condensates in high density regime , 2015, Scientific Reports.

[26]  P. Lagoudakis,et al.  Robust platform for engineering pure-quantum-state transitions in polariton condensates , 2014, 1411.4579.

[27]  Jonathan Keeling,et al.  Thermalization and breakdown of thermalization in photon condensates , 2014, 1410.6632.

[28]  J. Baumberg,et al.  Optical superfluid phase transitions and trapping of polariton condensates. , 2013, Physical review letters.

[29]  M. Kamp,et al.  Determination of operating parameters for a GaAs-based polariton laser , 2013 .

[30]  K. Kamide,et al.  Second thresholds in BEC-BCS-laser crossover of exciton-polariton systems. , 2013, Physical review letters.

[31]  P. Lagoudakis,et al.  Polariton condensation in an optically induced two-dimensional potential , 2012, 1211.1290.

[32]  P. Lagoudakis,et al.  Crossover from photon to exciton-polariton lasing , 2012 .

[33]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[34]  S. Höfling,et al.  Characterization of two-threshold behavior of the emission from a GaAs microcavity , 2012 .

[35]  P. S. Eldridge,et al.  Lasing threshold doubling at the crossover from strong to weak coupling regime in GaAs microcavity , 2012 .

[36]  W. Vos,et al.  Competition between electronic Kerr and free carrier effects in an ultimate fast switched semiconductor microcavity , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[37]  M. Weitz,et al.  Bose–Einstein condensation of photons in an optical microcavity , 2010, Nature.

[38]  T. Byrnes,et al.  BCS wave-function approach to the BEC-BCS crossover of exciton-polariton condensates. , 2010, Physical review letters.

[39]  K. Kamide,et al.  What determines the wave function of electron-hole pairs in polariton condensates? , 2009, Physical review letters.

[40]  K. West,et al.  Lasing and polariton condensation: Two distinct transitions in GaAs microcavities with stress traps , 2009 .

[41]  K. West,et al.  Role of the stress trap in the polariton quasiequilibrium condensation in GaAs microcavities , 2008, 0808.1861.

[42]  M. S. Skolnick,et al.  Intrinsic decoherence mechanisms in the microcavity polariton condensate. , 2008, Physical review letters.

[43]  Isabelle Sagnes,et al.  Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. , 2007, Physical review letters.

[44]  A. Lemaître,et al.  Photon lasing in GaAs microcavity : Similarities with a polariton condensate , 2007, 0709.4372.

[45]  P. J. Harding,et al.  Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities , 2007, 0706.2385.

[46]  K. West,et al.  Bose-Einstein Condensation of Microcavity Polaritons in a Trap , 2007, Science.

[47]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[48]  P. Littlewood,et al.  BCS-BEC crossover in a system of microcavity polaritons , 2005, cond-mat/0503184.

[49]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Jeremy J. Baumberg,et al.  Transition from strong to weak coupling and the onset of lasing in semiconductor microcavities , 2002 .

[51]  Larry A. Coldren,et al.  Modeling temperature effects and spatial hole burning to optimize vertical-cavity surface-emitting laser performance , 1993 .

[52]  Maurice Bernard,et al.  Laser Conditions in Semiconductors , 1961, 1961.