The color center singlet state of oxygen vacancies in TiO2.

Oxygen vacancies are ubiquitous in TiO2 and play key roles in catalysis and magnetism applications. Despite being extensively investigated, the electronic structure of oxygen vacancies in TiO2 remains controversial both experimentally and theoretically. Here, we report a study of a neutral oxygen vacancy in TiO2 using state-of-the-art quantum chemical electronic structure methods. We find that the ground state is a color center singlet state in both the rutile and the anatase phases of TiO2. Specifically, embedded coupled cluster with singles, doubles, and perturbative triples calculations find, for an oxygen vacancy in rutile, that the lowest triplet state energy is 0.6 eV above the singlet state, and in anatase, the triplet state energy is higher by 1.4 eV. Our study provides fresh insights into the electronic structure of the oxygen vacancy in TiO2, clarifying earlier controversies and potentially inspiring future studies of defects with correlated wave function theories.

[1]  George H. Booth,et al.  NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods. , 2020, The Journal of chemical physics.

[2]  E. Wang,et al.  Probing Nonequilibrium Dynamics of Photoexcited Polarons on a Metal-Oxide Surface with Atomic Precision. , 2020, Physical review letters.

[3]  H. Oberhofer,et al.  Towards a transferable design of solid-state embedding models on the example of a rutile TiO2 (110) surface. , 2019, The Journal of chemical physics.

[4]  A. Alavi,et al.  Small polarons and the Janus nature of TiO2 (110) , 2019, Physical Review B.

[5]  F. Neese,et al.  Accurate Band Gap Predictions of Semiconductors in the Framework of the Similarity Transformed Equation of Motion Coupled Cluster Theory , 2019, Inorganic chemistry.

[6]  M. Rohlfing,et al.  Origin of the deep band-gap state in TiO2 (110): ddσ bonds between Ti-Ti pairs , 2018, Physical Review B.

[7]  A. Michaelides,et al.  Visualization of Water-Induced Surface Segregation of Polarons on Rutile TiO2(110). , 2018, The journal of physical chemistry letters.

[8]  U. Diebold,et al.  Interplay between Adsorbates and Polarons: CO on Rutile TiO_{2}(110). , 2018, Physical review letters.

[9]  G. Kresse,et al.  Polaron-Driven Surface Reconstructions , 2017 .

[10]  George H. Booth,et al.  A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface , 2017, The Journal of chemical physics.

[11]  A. Michaelides,et al.  Structure of a model TiO2 photocatalytic interface. , 2016, Nature materials.

[12]  J. van den Brink,et al.  Orbital breathing effects in the computation of x-ray d-ion spectra in solids by ab initio wave-function-based methods , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Frank Neese,et al.  Surface Adsorption Energetics Studied with "Gold Standard" Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO2(110). , 2016, The journal of physical chemistry letters.

[14]  Annabella Selloni,et al.  Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. , 2016, Nature materials.

[15]  G. Thornton,et al.  Engineering Polarons at a Metal Oxide Surface. , 2016, Physical review letters.

[16]  A. Alavi,et al.  Preface: Special Topic Section on Advanced Electronic Structure Methods for Solids and Surfaces. , 2015, The Journal of chemical physics.

[17]  J. VandeVondele,et al.  The nature of excess electrons in anatase and rutile from hybrid DFT and RPA. , 2014, Physical chemistry chemical physics : PCCP.

[18]  Florian Libisch,et al.  Embedded correlated wavefunction schemes: theory and applications. , 2014, Accounts of chemical research.

[19]  A. Manivannan,et al.  Triplet ground state of the neutral oxygen-vacancy donor in rutileTiO2 , 2014 .

[20]  Alexey A. Sokol,et al.  ChemShell—a modular software package for QM/MM simulations , 2014 .

[21]  S. Louie,et al.  First-principles DFT plus GW study of oxygen vacancies in rutile TiO2 , 2014, 1407.5706.

[22]  Georg Kresse,et al.  Direct view at excess electrons in TiO2 rutile and anatase. , 2014, Physical review letters.

[23]  Ali Alavi,et al.  Linear-scaling and parallelisable algorithms for stochastic quantum chemistry , 2013, 1305.6981.

[24]  G. Thornton,et al.  Structure of clean and adsorbate-covered single-crystal rutile TiO2 surfaces. , 2013, Chemical reviews.

[25]  A. Kuwabara,et al.  Defect Chemistry of Rutile TiO2 from First Principles Calculations , 2013 .

[26]  N. Giles,et al.  Intrinsic small polarons in rutile TiO 2 , 2013 .

[27]  G. Kresse,et al.  Dual behavior of excess electrons in rutile TiO2 , 2012, 1212.5949.

[28]  Ali Alavi,et al.  Towards an exact description of electronic wavefunctions in real solids , 2012, Nature.

[29]  T. Frauenheim,et al.  Quantitative theory of the oxygen vacancy and carrier self-trapping in bulk TiO 2 , 2012 .

[30]  J. Robertson,et al.  Calculation of point defects in rutile TiO 2 by the screened-exchange hybrid functional , 2012, 1207.2579.

[31]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[32]  D. Panayotov,et al.  Infrared Spectroscopic Studies of Conduction Band and Trapped Electrons in UV-Photoexcited, H-Atom n-Doped, and Thermally Reduced TiO2 , 2012 .

[33]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[34]  B. Hammer,et al.  DFT+U study of defects in bulk rutile TiO(2). , 2010, The Journal of chemical physics.

[35]  Georg Kresse,et al.  Hybrid functional studies of the oxygen vacancy in TiO 2 , 2010 .

[36]  Ali Alavi,et al.  Communications: Survival of the fittest: accelerating convergence in full configuration-interaction quantum Monte Carlo. , 2010, The Journal of chemical physics.

[37]  G. Thornton,et al.  Oxygen vacancy origin of the surface band-gap state of TiO2(110). , 2010, Physical review letters.

[38]  Benjamin J. Morgan,et al.  Intrinsic n-type Defect Formation in TiO2: A Comparison of Rutile and Anatase from GGA+U Calculations , 2010 .

[39]  G. M. Ribeiro,et al.  Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutileTiO2 , 2009 .

[40]  G. Pacchioni,et al.  Reduced and n-Type Doped TiO2: Nature of Ti3+ Species , 2009 .

[41]  Ali Alavi,et al.  Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. , 2009, The Journal of chemical physics.

[42]  A. Manivannan,et al.  Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions , 2009 .

[43]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[44]  G. Mattioli,et al.  Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO 2 , 2008 .

[45]  G. Watson,et al.  A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .

[46]  N. A. Deskins,et al.  Electron transport via polaron hopping in bulk TiO2 : A density functional theory characterization , 2007 .

[47]  Annabella Selloni,et al.  Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces. , 2006, Physical review letters.

[48]  John T Yates,et al.  Surface science studies of the photoactivation of TiO2--new photochemical processes. , 2006, Chemical reviews.

[49]  S. Yoon,et al.  Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films , 2006 .

[50]  J. Sakai,et al.  Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films , 2006 .

[51]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[52]  J. Coey,et al.  Thin films: Unexpected magnetism in a dielectric oxide , 2004, Nature.

[53]  J. Nørskov,et al.  Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). , 2001, Physical review letters.

[54]  R. Dovesi,et al.  A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations , 2001 .

[55]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[56]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[57]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields: A Comparison of Local, Nonlocal, and Hybrid Density Functionals , 1995 .

[58]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[59]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[60]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[61]  C. Peden,et al.  Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110) , 2003 .

[62]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[63]  H. Stoll,et al.  Energy-Adjusted Pseudopotentials for Transition-Metal Elements , 1986 .