Inspired by Nature: Antioxidants and Nanotechnology

Since the advent of modern nanotechnology a couple of decades ago, the field of "nano-bio-med" has attracted particular interest, culminating in an almost meteoric rise of common, feasible, more speculative, and, on occasion, outrightly exotic applications of nanomaterials. [...].

[1]  Bingyun Li,et al.  Nanotoxicity: emerging concerns regarding nanomaterial safety and occupational hard metal (WC-Co) nanoparticle exposure , 2016, International journal of nanomedicine.

[2]  A. Reichert,et al.  Nanotherapy and Reactive Oxygen Species (ROS) in Cancer: A Novel Perspective , 2018, Antioxidants.

[3]  S. R. Pinnapireddy,et al.  Resuspendable Powders of Lyophilized Chalcogen Particles with Activity against Microorganisms , 2018, Antioxidants.

[4]  Hongtao Yu,et al.  Mechanisms of nanotoxicity: Generation of reactive oxygen species , 2014, Journal of food and drug analysis.

[5]  C. Jacob,et al.  Natural Nanoparticles: A Particular Matter Inspired by Nature , 2017, Antioxidants.

[6]  S. Gayathri,et al.  Extracellular biosynthesis of Selenium nanoparticles using some species of Lactobacillus , 2015 .

[7]  E. Beniash Biominerals--hierarchical nanocomposites: the example of bone. , 2011, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[8]  A. Sapin-Minet,et al.  Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin , 2018, Antioxidants.

[9]  J. Handzlik,et al.  Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities , 2016, Pharmaceutics.

[10]  I. Clarot,et al.  Glutathione: Antioxidant Properties Dedicated to Nanotechnologies , 2018, Antioxidants.

[11]  J. Lloyd,et al.  Aerobic microbial manufacture of nanoscale selenium: exploiting nature’s bio-nanomineralization potential , 2009, Biotechnology Letters.

[12]  Jinhuai Liu,et al.  Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. , 2010, Colloids and surfaces. B, Biointerfaces.

[13]  F. Namvar,et al.  Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications , 2015, Molecules.

[14]  J. Sochor,et al.  Nanoparticles Biosynthesized by Yeast: A Review of their application , 2017 .

[15]  C. Jacob,et al.  Milling the Mistletoe: Nanotechnological Conversion of African Mistletoe (Loranthus micranthus) Intoantimicrobial Materials , 2018, Antioxidants.

[16]  J. Handzlik,et al.  Natural selenium particles from Staphylococcus carnosus: Hazards or particles with particular promise? , 2017, Journal of hazardous materials.

[17]  R. Bernier-Latmani,et al.  Role of proteins in controlling selenium nanoparticle size , 2011, Nanotechnology.

[18]  M. Montenarh,et al.  Nature's Hat-trick: Can we use sulfur springs as ecological source for materials with agricultural and medical applications? , 2017 .

[19]  Utkarsha U. Shedbalkar,et al.  Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells , 2017, International journal of nanomedicine.