Koopman-Based Lifting Techniques for Nonlinear Systems Identification

We develop a novel lifting technique for nonlinear system identification based on the framework of the Koopman operator. The key idea is to identify the linear (infinite dimensional) Koopman operator in the lifted space of observables, instead of identifying the nonlinear system in the state space, a process which results in a linear method for nonlinear systems identification. The proposed lifting technique is an indirect method that does not require to compute time derivatives and is therefore well-suited to low-sampling rate data sets. Considering different finite-dimensional subspaces to approximate and identify the Koopman operator, we propose two numerical schemes: a main method and a dual method. The main method is a parametric identification technique that can accurately reconstruct the vector field of a broad class of systems. The dual method provides estimates of the vector field at the data points and is well-suited to identify high-dimensional systems with small datasets. This paper describes the two methods, provides theoretical convergence results, and illustrates the lifting techniques with several examples.

[1]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[2]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[3]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[4]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[5]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[6]  C. Kravaris,et al.  Time-discretization of nonlinear control systems via Taylor methods , 1999 .

[7]  C. David Remy,et al.  Nonlinear System Identification of Soft Robot Dynamics Using Koopman Operator Theory , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[8]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[9]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[10]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[11]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[12]  Yoshihiko Susuki,et al.  Nonlinear Koopman modes and power system stability assessment without models , 2014, 2014 IEEE PES General Meeting | Conference & Exposition.

[13]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[14]  Giancarlo Ferrari-Trecate,et al.  Fuzzy systems with overlapping Gaussian concepts: Approximation properties in Sobolev norms , 2002, Fuzzy Sets Syst..

[15]  Guy-Bart Stan,et al.  A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems , 2014, IEEE Transactions on Automatic Control.

[16]  Günter Radons,et al.  From dynamical systems with time-varying delay to circle maps and Koopman operators. , 2017, Physical review. E.

[17]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[18]  Steven L. Brunton,et al.  Sparse Identification of Nonlinear Dynamics with Control (SINDYc) , 2016, 1605.06682.

[19]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[20]  Igor Mezic,et al.  On Convergence of Extended Dynamic Mode Decomposition to the Koopman Operator , 2017, J. Nonlinear Sci..

[21]  Lennart Ljung,et al.  Identification of Sparse Continuous-Time Linear Systems with Low Sampling Rate: Exploring Matrix Logarithms , 2016, ArXiv.

[22]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[23]  Xin Li,et al.  On simultaneous approximations by radial basis function neural networks , 1998, Appl. Math. Comput..

[24]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[25]  Jake P. Taylor-King,et al.  Operator Fitting for Parameter Estimation of Stochastic Differential Equations , 2017, 1709.05153.

[26]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[27]  Steven L. Brunton,et al.  Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics , 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[28]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[29]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[30]  VenancioAlvarez GENERALIZED WEIGHTED SOBOLEV SPACES AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS II , 2002 .

[31]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[32]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[33]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[34]  J. Rogers Chaos , 1876 .

[35]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[37]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[38]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[39]  N. Wiener,et al.  Nonlinear Problems in Random Theory , 1964 .

[40]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[41]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[42]  Aivar Sootla,et al.  Geometric Properties of Isostables and Basins of Attraction of Monotone Systems , 2017, IEEE Transactions on Automatic Control.

[43]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[44]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[45]  Venancio Alvarez,et al.  Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials II , 2002, Approximation Theory and its Applications.

[46]  Alexandre Mauroy,et al.  Linear identification of nonlinear systems: A lifting technique based on the Koopman operator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[47]  Marina Meila,et al.  Estimating Vector Fields on Manifolds and the Embedding of Directed Graphs , 2014, ArXiv.

[48]  Benedetta Morini,et al.  Computational Techniques for Real Logarithms of Matrices , 1996, SIAM J. Matrix Anal. Appl..

[49]  Yonathan Bard,et al.  Nonlinear parameter estimation , 1974 .

[50]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[51]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[52]  Guy-Bart Stan,et al.  Online model selection for synthetic gene networks , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[53]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[54]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[55]  C. Caramanis What is ergodic theory , 1963 .

[56]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[57]  Jean-Jacques E. Slotine,et al.  Manifold Learning With Contracting Observers for Data-Driven Time-Series Analysis , 2016, IEEE Transactions on Signal Processing.