Genomes by design

Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges.

[1]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[2]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[3]  Sriram Kosuri,et al.  Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips , 2010, Nature Biotechnology.

[4]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[5]  Matthew D. Schultz,et al.  Release Factor One Is Nonessential in Escherichia coli , 2012, ACS chemical biology.

[6]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[7]  O. White,et al.  Global transposon mutagenesis and a minimal Mycoplasma genome. , 1999, Science.

[8]  K. Dill,et al.  The Protein-Folding Problem, 50 Years On , 2012, Science.

[9]  Merja Penttilä,et al.  Yeast oligo-mediated genome engineering (YOGE). , 2013, ACS synthetic biology.

[10]  Jens Meiler,et al.  RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite , 2011, PloS one.

[11]  M. Itaya,et al.  Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  David R. Liu,et al.  Negative selection and stringency modulation in phage-assisted constinuous evolution , 2014, Nature chemical biology.

[13]  C. A. Hutchinson,et al.  Genome transplantation in bacteria: changing one species to another. , 2007, Nature Reviews Microbiology.

[14]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[15]  Martin J. Aryee,et al.  Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing , 2014, Nature Biotechnology.

[16]  Farren J. Isaacs,et al.  Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA , 2014, Nature Protocols.

[17]  Timothy B. Stockwell,et al.  Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome , 2008, Science.

[18]  Shigeyuki Yokoyama,et al.  Codon reassignment in the Escherichia coli genetic code , 2010, Nucleic acids research.

[19]  G. Church,et al.  Large-scale de novo DNA synthesis: technologies and applications , 2014, Nature Methods.

[20]  Emmanuelle Schmitt,et al.  Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo , 2009, Proceedings of the National Academy of Sciences.

[21]  J. E. Bouma,et al.  Evolution of a bacteria/plasmid association , 1988, Nature.

[22]  D. Hilvert,et al.  Protein design by directed evolution. , 2008, Annual review of biophysics.

[23]  Farren J. Isaacs,et al.  Rational optimization of tolC as a powerful dual selectable marker for genome engineering , 2014, Nucleic acids research.

[24]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[25]  David R. Liu,et al.  A System for the Continuous Directed Evolution of Biomolecules , 2011, Nature.

[26]  Charles A. Gersbach,et al.  Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector , 2014, Nucleic acids research.

[27]  George Church,et al.  Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion , 2011, Nucleic acids research.

[28]  R. Schaaper,et al.  Mutants in the Exo I motif of Escherichia coli dnaQ: defective proofreading and inviability due to error catastrophe. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[30]  Ryan T Gill,et al.  Trackable multiplex recombineering for gene-trait mapping in E. coli. , 2013, Methods in molecular biology.

[31]  T. Lu,et al.  Genomically encoded analog memory with precise in vivo DNA writing in living cell populations , 2014, Science.

[32]  D. Söll,et al.  N‐Acetyl lysyl‐tRNA synthetases evolved by a CcdB‐based selection possess N‐acetyl lysine specificity in vitro and in vivo , 2012, FEBS letters.

[33]  Farren J. Isaacs,et al.  Recoded organisms engineered to depend on synthetic amino acids , 2015, Nature.

[34]  James D. Winkler,et al.  Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination. , 2015, ACS synthetic biology.

[35]  G. Church,et al.  Genome-scale promoter engineering by Co-Selection MAGE , 2012, Nature Methods.

[36]  Farren J. Isaacs,et al.  Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion , 2012, FEBS letters.

[37]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[38]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[39]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[40]  D. Court,et al.  Genetic engineering using homologous recombination. , 2002, Annual review of genetics.

[41]  J. V. Hest,et al.  Efficient incorporation of unsaturated methionine analogues into proteins in vivo , 2000 .

[42]  Jeffrey E. Barrick,et al.  Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness , 2014, Nature chemical biology.

[43]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[44]  Praneeth Sadda,et al.  Versatile genetic assembly system (VEGAS) to assemble pathways for expression in S. cerevisiae , 2015, Nucleic acids research.

[45]  F. Blattner,et al.  Emergent Properties of Reduced-Genome Escherichia coli , 2006, Science.

[46]  Frances H Arnold,et al.  Synthetic biology: Engineering explored , 2014, Nature.

[47]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[48]  Chad W. Euler,et al.  Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials , 2014, Nature Biotechnology.

[49]  Farren J. Isaacs,et al.  RNA synthetic biology , 2006, Nature Biotechnology.

[50]  Jef D Boeke,et al.  Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course , 2009, Genetics.

[51]  Balázs Papp,et al.  The dawn of evolutionary genome engineering , 2014, Nature Reviews Genetics.

[52]  Ryan T Gill,et al.  Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides , 2010, Nature Biotechnology.

[53]  Jeffrey P. Mower,et al.  RNAi in Budding Yeast , 2009, Science.

[54]  D. Olson The History of Writing , 1880, Nature.

[55]  Adam P. Arkin,et al.  A versatile framework for microbial engineering using synthetic non-coding RNAs , 2014, Nature Reviews Microbiology.

[56]  Hal S Alper,et al.  Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. , 2014, ACS synthetic biology.

[57]  Farren J. Isaacs,et al.  Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering , 2014, Nature Protocols.

[58]  Nicholas C Tang,et al.  Parallel on-chip gene synthesis and application to optimization of protein expression , 2011, Nature Biotechnology.

[59]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[60]  Jameson K. Rogers,et al.  Evolution-guided optimization of biosynthetic pathways , 2014, Proceedings of the National Academy of Sciences.

[61]  Steven Roger Fischer,et al.  A History of Writing , 2004 .

[62]  C. Gersbach Genome engineering: the next genomic revolution , 2014, Nature Methods.

[63]  John Bunge,et al.  Estimating the Number of Species in Microbial Diversity Studies , 2014 .

[64]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[65]  Farren J. Isaacs,et al.  Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection , 2012, Nucleic acids research.

[66]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  James E. DiCarlo,et al.  RNA-guided gene drives can efficiently bias inheritance in wild yeast , 2015, bioRxiv.

[68]  Judy Qiu,et al.  Total Synthesis of a Functional Designer Eukaryotic Chromosome , 2014, Science.

[69]  S Brakmann,et al.  An Error‐Prone T7 RNA Polymerase Mutant Generated by Directed Evolution , 2001, Chembiochem : a European journal of chemical biology.

[70]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[71]  N. Costantino,et al.  Enhanced levels of λ Red-mediated recombinants in mismatch repair mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Samuel H. Wilson,et al.  Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. , 1993, The Journal of biological chemistry.

[73]  P. Dhurjati,et al.  Effects of plasmid amplification and recombinant gene expression on the growth kinetics of recombinant E. coli , 1989, Biotechnology and bioengineering.

[74]  G. Walker,et al.  A model for a umuDC-dependent prokaryotic DNA damage checkpoint. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[76]  M. Caruthers,et al.  Synthesis of DNA/RNA and Their Analogs via Phosphoramidite and H-Phosphonate Chemistries , 2013, Molecules.

[77]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[78]  Michael M. Desai,et al.  The Speed of Evolution and Maintenance of Variation in Asexual Populations , 2007, Current Biology.

[79]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[80]  M. Ibba,et al.  Aminoacyl-tRNA synthesis and translational quality control. , 2009, Annual review of microbiology.

[81]  J. Keasling,et al.  Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids , 2012, Nature Biotechnology.

[82]  W. Stemmer,et al.  Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. , 1995, Gene.

[83]  U. Bornscheuer,et al.  Improved biocatalysts by directed evolution and rational protein design. , 2001, Current opinion in chemical biology.

[84]  Dieter Söll,et al.  Natural expansion of the genetic code. , 2007, Nature chemical biology.

[85]  Duhee Bang,et al.  Gene synthesis by circular assembly amplification , 2008, Nature Methods.

[86]  D. Söll,et al.  Upgrading protein synthesis for synthetic biology. , 2013, Nature chemical biology.

[87]  Martin Fussenegger,et al.  A general design strategy for protein-responsive riboswitches in mammalian cells , 2014, Nature Methods.

[88]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[89]  Patrick J. Paddison,et al.  Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis , 2004, Nature Methods.

[90]  David T. F. Dryden,et al.  Highlights of the DNA cutters: a short history of the restriction enzymes , 2014, Nucleic acids research.

[91]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[92]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[93]  Shohei Koide,et al.  Design of protein function leaps by directed domain interface evolution , 2008, Proceedings of the National Academy of Sciences.

[94]  Timothy K Lu,et al.  Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases , 2014, Nature Biotechnology.

[95]  Ryo Takeuchi,et al.  Biocontainment of genetically modified organisms by synthetic protein design , 2015, Nature.

[96]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[97]  H. Kim,et al.  A guide to genome engineering with programmable nucleases , 2014, Nature Reviews Genetics.

[98]  Farren J. Isaacs,et al.  Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement , 2011, Science.

[99]  Fuzhong Zhang,et al.  Biosensors and their applications in microbial metabolic engineering. , 2011, Trends in microbiology.

[100]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[101]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[102]  G. Church,et al.  Accurate multiplex gene synthesis from programmable DNA microchips , 2004, Nature.

[103]  Sriram Kosuri,et al.  Causes and Effects of N-Terminal Codon Bias in Bacterial Genes , 2013, Science.

[104]  Andrew D Ellington,et al.  Generalized bacterial genome editing using mobile group II introns and Cre-lox , 2013, Molecular systems biology.

[105]  Rahul Sarpeshkar,et al.  Synthetic analog computation in living cells , 2013, Nature.

[106]  N. Costantino,et al.  Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. , 2007, Methods in enzymology.

[107]  Max G Schubert,et al.  Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas. , 2015, Cell systems.

[108]  Q. Shen,et al.  Bacillus subtilis genome editing using ssDNA with short homology regions , 2012, Nucleic acids research.

[109]  J. Park,et al.  Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs , 2013, Nature Biotechnology.

[110]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[111]  Jan Marienhagen,et al.  Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation , 2013, Nucleic acids research.

[112]  R. Hoess,et al.  The role of the loxP spacer region in P1 site-specific recombination. , 1986, Nucleic acids research.

[113]  Feng Zhang,et al.  Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system , 2013, Nucleic acids research.

[114]  Axel Visel,et al.  Stop codon reassignments in the wild , 2014, Science.

[115]  Farren J. Isaacs,et al.  Programming cells by multiplex genome engineering and accelerated evolution , 2009, Nature.

[116]  M. Heller DNA microarray technology: devices, systems, and applications. , 2002, Annual review of biomedical engineering.

[117]  Jeffrey E. Barrick,et al.  Engineering reduced evolutionary potential for synthetic biology. , 2014, Molecular bioSystems.

[118]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[119]  George M. Church,et al.  Direct Mutagenesis of Thousands of Genomic Targets Using Microarray-Derived Oligonucleotides , 2014, ACS synthetic biology.

[120]  Jamie H. D. Cate,et al.  Selection of chromosomal DNA libraries using a multiplex CRISPR system , 2014, eLife.

[121]  Adam James Waite,et al.  An improved zinc-finger nuclease architecture for highly specific genome editing , 2007, Nature Biotechnology.

[122]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[123]  R. Breaker Prospects for riboswitch discovery and analysis. , 2011, Molecular cell.

[124]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[125]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[126]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[127]  Kevin V Solomon,et al.  Synthetic metabolism: engineering biology at the protein and pathway scales. , 2009, Chemistry & biology.

[128]  D. G. Gibson,et al.  Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides , 2009, Nucleic acids research.

[129]  Joseph A. Krzycki,et al.  Pyrrolysine Encoded by UAG in Archaea: Charging of a UAG-Decoding Specialized tRNA , 2002, Science.

[130]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[131]  Nicole Borth,et al.  Applications of cell sorting in biotechnology , 2006 .

[132]  N. Costantino,et al.  Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[133]  B. Palsson,et al.  Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods , 2012, Nature Reviews Microbiology.

[134]  Christopher J. Gregg,et al.  Probing the Limits of Genetic Recoding in Essential Genes , 2013, Science.

[135]  Swapnil Bhatia,et al.  Functional optimization of gene clusters by combinatorial design and assembly , 2014, Nature Biotechnology.

[136]  Ethan Bier,et al.  The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations , 2015, Science.

[137]  Sarah J Kodumal,et al.  Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Stefan Wuertz,et al.  Studying plasmid horizontal transfer in situ: a critical review , 2005, Nature Reviews Microbiology.

[139]  Cameron Neylon,et al.  Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. , 2004, Nucleic acids research.

[140]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[141]  A. Böck,et al.  Selenocysteine: the 21st amino acid , 1991, Molecular microbiology.