A design of 50/150/200 kbps, low power FSK transceiver using phase-locked loop with programmable loop bandwidth and integrated SPDT for IEEE 802.15.4g application

Abstract This paper presents a 50/150/200 kbps, low power transceiver with one-point modulation and integrated single pole double throw (SPDT) switch for IEEE 802.15.4g application. To ensure that the proposed low power transceiver can operate at a multi data rate, multi data-rate (50/150/200 kbps) frequency shift keying (FSK) modulation is implemented using a phase-locked loop (PLL) with a programmable loop bandwidth. The bandwidth switching scheme is combined with the programmable loop bandwidth to support the high data rate in the PLL of the transmitter. In the receiver, the SPDT switch is integrated to share the antenna and matching network between the transmitter and receiver, thus minimizing the system cost. Also the active-RC band pass filter with the programmable bandwidth is designed to support the data rates of 50, 150, and 200 kbps. The capacitors in each data rate are shared efficiently to minimize the die area. The FSK transmitter is implemented using 0.18 μm 1-poly 6-metal complementary metal-oxide semiconductor technology. The die area of the transceiver is 4.0 mm2. The power consumption of the transmitter and receiver are 54 and 25 mW, respectively, when the output power level of the transmitter is +10.17 dBm at 1.8 V supply voltage. The phase noise of the PLL output at 1.8462 GHz is −118.13 dBc/Hz with a 1 MHz offset.

[1]  Michael H. Perrott,et al.  A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5-Mb/s GFSK modulation , 1997, IEEE J. Solid State Circuits.

[2]  Rainer Matischek,et al.  A Bulk Acoustic Wave (BAW) Based Transceiver for an In-Tire-Pressure Monitoring Sensor Node , 2010, IEEE Journal of Solid-State Circuits.

[3]  Sanroku Tsukamoto,et al.  A CMOS 6-b, 200 MSample/s, 3 V-supply A/D converter for a PRML read channel LSI , 1996 .

[4]  M.P. Flynn,et al.  A 14 mW Fractional-N PLL Modulator With a Digital Phase Detector and Frequency Switching Scheme , 2008, IEEE Journal of Solid-State Circuits.

[5]  S. Tsukamoto,et al.  A CMOS 6 b 200 M sample/s 3 V-supply A/D converter for a PRML read channel LSI , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[6]  K. Numata,et al.  A Low-Power Dual-Band Triple-Mode WLAN CMOS Transceiver , 2006, IEEE Journal of Solid-State Circuits.

[7]  Kang-Yoon Lee,et al.  An IEEE 802.15.4g SUN FSK RF CMOS transceiver for Smart Grid and CEs , 2013, 2013 IEEE Third International Conference on Consumer Electronics ¿ Berlin (ICCE-Berlin).

[8]  P. Dudek,et al.  A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line , 2000, IEEE Journal of Solid-State Circuits.

[9]  C. Nguyen,et al.  Ultra-Compact High-Linearity High-Power Fully Integrated DC–20-GHz 0.18-$\mu{\hbox {m}}$ CMOS T/R Switch , 2007, IEEE Transactions on Microwave Theory and Techniques.

[10]  Kari Stadius,et al.  An All-Digital PLL Frequency Synthesizer With an Improved Phase Digitization Approach and an Optimized Frequency Calibration Technique , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Poras T. Balsara,et al.  All-digital frequency synthesizer in deep-submicron CMOS , 2006 .

[12]  Kang-Yoon Lee,et al.  Low power FSK transmitter using all-digital PLL for IEEE 802.15.4g application , 2013 .

[13]  Geng Yang,et al.  The Design of All-Digital Polar Transmitter Based on ADPLL and Phase Synchronized ΔΣ Modulator , 2012, IEEE Journal of Solid-State Circuits.