Certification and Quantification of Multilevel Quantum Coherence

Quantum coherence, present whenever a quantum system exists in a superposition of multiple classically distinct states, marks one of the fundamental departures from classical physics. Quantum coherence has recently been investigated rigorously within a resource-theoretic formalism. However, the finer-grained notion of multilevel coherence, which explicitly takes into account the number of superposed classical states, has remained relatively unexplored. A comprehensive analysis of multilevel coherence, which acts as the single-party analogue to multipartite entanglement, is essential for understanding natural quantum processes as well as for gauging the performance of quantum technologies. Here, we develop the theoretical and experimental groundwork for characterizing and quantifying multilevel coherence. We prove that nontrivial levels of purity are required for multilevel coherence, as there is a ball of states around the maximally mixed state that do not exhibit multilevel coherence in any basis. We provide a simple, necessary, and sufficient analytical criterion to verify the presence of multilevel coherence, which leads to a complete classification of multilevel coherence for three-level systems. We present the robustness of multilevel coherence, a bona fide quantifier, which we show to be numerically computable via semidefinite programming and experimentally accessible via multilevel coherence witnesses, which we introduce and characterize. We further verify and lower bound the robustness of multilevel coherence by performing a semi-device-independent phase discrimination task, which is implemented experimentally with four-level quantum probes in a photonic setup. Our results contribute to understanding the operational relevance of genuine multilevel coherence, also by demonstrating the key role it plays in enhanced phase discrimination-a primitive for quantum communication and metrology-and suggest new ways to reliably and effectively test the quantum behavior of physical systems.

[1]  Tohya Hiroshima Optimal dense coding with mixed state entanglement , 2001 .

[2]  K. B. Whaley,et al.  Using coherence to enhance function in chemical and biophysical systems , 2017, Nature.

[3]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[4]  Michele Allegra,et al.  Coherence in quantum estimation , 2016 .

[5]  Seungbeom Chin,et al.  Generalized coherence concurrence and path distinguishability , 2017, 1702.06061.

[6]  R. Werner All teleportation and dense coding schemes , 2000, quant-ph/0003070.

[7]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[8]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[9]  S. Barnett,et al.  Quantum state discrimination , 2008, 0810.1970.

[10]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[11]  Gerardo Adesso,et al.  Converting multilevel nonclassicality into genuine multipartite entanglement , 2017, 1704.04153.

[12]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[13]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[14]  Andreas Buchleitner,et al.  Efficient and coherent excitation transfer across disordered molecular networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Horodecki,et al.  QUANTUMNESS IN THE CONTEXT OF) RESOURCE THEORIES , 2012, 1209.2162.

[16]  Charles R. Johnson,et al.  Eigenvalue inequalities for principal submatrices , 1981 .

[17]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[18]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[19]  Siying He,et al.  Quantitative Coherence Witness for Finite Dimensional States , 2017, 1705.09027.

[20]  J. Anders,et al.  Coherence and measurement in quantum thermodynamics , 2015, Scientific Reports.

[21]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[22]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[23]  Xiongfeng Ma,et al.  Intrinsic randomness as a measure of quantum coherence , 2015, 1505.04032.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[26]  K. B. Whaley,et al.  Quantum entanglement in photosynthetic light-harvesting complexes , 2009, 0905.3787.

[27]  Robert W. Spekkens,et al.  Quantum speed limits, coherence, and asymmetry , 2015, 1510.06474.

[28]  Klaus Mølmer,et al.  Entanglement and extreme spin squeezing. , 2000, Physical review letters.

[29]  Giulio Chiribella,et al.  Optimal quantum networks and one-shot entropies , 2016, ArXiv.

[30]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[31]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[32]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[33]  Robert W. Spekkens,et al.  A mathematical theory of resources , 2014, Inf. Comput..

[34]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[35]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[36]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[37]  Abraham Loeb,et al.  Quantum coherent oscillations in the early universe , 2016 .

[38]  M. Piani,et al.  Robustness of asymmetry and coherence of quantum states , 2016, 1601.03782.

[39]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[40]  G. Adesso,et al.  Measures and applications of quantum correlations , 2016, 1605.00806.

[41]  M. Plenio,et al.  Converting Nonclassicality into Entanglement. , 2015, Physical review letters.

[42]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[43]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[44]  Daniel Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, QCQC.

[45]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[46]  Mark Hillery,et al.  Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation , 2015, 1512.01874.

[47]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[48]  Mahdiyar Noorbala,et al.  Critical Number of Fields in Stochastic Inflation. , 2016, Physical review letters.

[49]  O. Gühne,et al.  Estimating entanglement measures in experiments. , 2006, Physical review letters.

[50]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information: Frontmatter , 2010 .

[51]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[52]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[53]  Howard Barnum,et al.  Separable balls around the maximally mixed multipartite quantum states , 2003 .

[54]  D. Gottesman Fault-Tolerant Quantum Computation with Higher-Dimensional Systems , 1998, quant-ph/9802007.

[55]  F. Brandão,et al.  Witnessed Entanglement , 2004, quant-ph/0405096.

[56]  Gerardo Adesso,et al.  Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. , 2016, Physical review letters.

[57]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[58]  Paul Camion,et al.  On the nonsingularity of complex matrices , 1966 .

[59]  W. Vogel,et al.  Convex ordering and quantification of quantumness , 2010, 1004.1944.

[60]  Nicolas J. Cerf,et al.  Asymmetric quantum cloning in any dimension , 1998, quant-ph/9805024.

[61]  M. Steiner Generalized robustness of entanglement , 2003, quant-ph/0304009.

[62]  Florian Mintert,et al.  Stationary quantum coherence and transport in disordered networks , 2013, 1305.6860.

[63]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[64]  Markus Tiersch,et al.  A critical view on transport and entanglement in models of photosynthesis , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[65]  M. Piani,et al.  Quantifying non-classical and beyond-quantum correlations in the unified operator formalism , 2014, 1401.8197.

[66]  E. B. Magrab,et al.  Vibrations , 2018 .

[67]  R. Varga On recurring theorems on diagonal dominance , 1976 .

[68]  Seth Lloyd,et al.  Resource Destroying Maps. , 2016, Physical review letters.

[69]  G. Adesso,et al.  Assisted Distillation of Quantum Coherence. , 2015, Physical review letters.

[70]  Kaifeng Bu,et al.  Asymmetry and coherence weight of quantum states , 2017, Physical Review A.

[71]  Andreas Winter,et al.  Interferometric visibility and coherence , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Charles R. Johnson Numerical ranges of principal submatrices , 1981 .

[73]  Seungbeom Chin,et al.  Coherence number as a discrete quantum resource , 2017, 1702.03219.

[74]  Eric G. Cavalcanti,et al.  Measurements on the reality of the wavefunction , 2014, Nature Physics.

[75]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[76]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[77]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[78]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[79]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[80]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[81]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[82]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[83]  R. Kosloff,et al.  Quantum Equivalence and Quantum Signatures in Heat Engines , 2015, 1502.06592.

[84]  Davide Girolami,et al.  Detecting metrologically useful asymmetry and entanglement by a few local measurements , 2016, 1611.02004.