Receptive Field Inference with Localized Priors

The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets.

[1]  William Bialek,et al.  Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[3]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[4]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[5]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[6]  Ian H. Stevenson,et al.  Bayesian Inference of Functional Connectivity and Network Structure From Spikes , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[7]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[8]  Eero P. Simoncelli,et al.  Spike-triggered neural characterization. , 2006, Journal of vision.

[9]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[10]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. II. Linearity of temporal and spatial summation. , 1993, Journal of neurophysiology.

[11]  P Kuyper,et al.  Triggered correlation. , 1968, IEEE transactions on bio-medical engineering.

[12]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Ben Willmore,et al.  The Receptive-Field Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation , 2003, The Journal of Neuroscience.

[15]  Pamela Reinagel,et al.  Decoding visual information from a population of retinal ganglion cells. , 1997, Journal of neurophysiology.

[16]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[17]  Simon R Schultz,et al.  Receptive field characterization by spike-triggered independent component analysis. , 2008, Journal of vision.

[18]  S A Shamma,et al.  Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. , 2001, Journal of neurophysiology.

[19]  Klaus Obermayer,et al.  Dynamics of Orientation Tuning in Cat V1 Neurons Depend on Location Within Layers and Orientation Maps , 2007, Front. Neurosci..

[20]  Robert Shapley,et al.  Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. , 2002, Journal of vision.

[21]  Eero P. Simoncelli,et al.  Least Squares Estimation Without Priors or Supervision , 2011, Neural Computation.

[22]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[23]  J. Gallant,et al.  Natural Stimulus Statistics Alter the Receptive Field Structure of V1 Neurons , 2004, The Journal of Neuroscience.

[24]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[25]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[26]  W. Bialek,et al.  Features and dimensions: Motion estimation in fly vision , 2005, q-bio/0505003.

[27]  Liam Paninski,et al.  Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains , 2011, Neural Computation.

[28]  R. Kass,et al.  Approximate Bayesian Inference in Conditionally Independent Hierarchical Models (Parametric Empirical Bayes Models) , 1989 .

[29]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[30]  L. Paninski Convergence Properties of Some Spike-Triggered Analysis Techniques , 2002 .

[31]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[32]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[33]  Eero P. Simoncelli,et al.  Biases in white noise analysis due to non-Poisson spike generation , 2003, Neurocomputing.

[34]  Jonathan Z. Simon,et al.  Robust Spectrotemporal Reverse Correlation for the Auditory System: Optimizing Stimulus Design , 2000, Journal of Computational Neuroscience.

[35]  J. Gallant,et al.  Spectral receptive field properties explain shape selectivity in area V4. , 2006, Journal of neurophysiology.

[36]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[37]  Markus Meister,et al.  Multi-neuronal signals from the retina: acquisition and analysis , 1994, Journal of Neuroscience Methods.

[38]  Jonathan Z. Simon,et al.  Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex , 2005, Journal of Computational Neuroscience.

[39]  K. Naka,et al.  White-Noise Analysis of a Neuron Chain: An Application of the Wiener Theory , 1972, Science.

[40]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[41]  Liam Paninski,et al.  Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains , 2011, Neural Computation.

[42]  Michael E. Tipping,et al.  Fast Marginal Likelihood Maximisation for Sparse Bayesian Models , 2003 .

[43]  Liam Paninski,et al.  Convergence properties of three spike-triggered analysis techniques , 2003, NIPS.

[44]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[45]  A M Aertsen,et al.  Reverse-correlation methods in auditory research , 1983, Quarterly Reviews of Biophysics.

[46]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[47]  Maneesh Sahani,et al.  How Linear are Auditory Cortical Responses? , 2002, NIPS.

[48]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[49]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[50]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[51]  Julian J. Bussgang,et al.  Crosscorrelation functions of amplitude-distorted gaussian signals , 1952 .

[52]  M. Merzenich,et al.  Optimizing sound features for cortical neurons. , 1998, Science.

[53]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[54]  David P. Wipf,et al.  Sparse Estimation Using General Likelihoods and Non-Factorial Priors , 2009, NIPS.

[55]  Bernhard Schölkopf,et al.  Center-surround patterns emerge as optimal predictors for human saccade targets. , 2009, Journal of vision.

[56]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Eero P. Simoncelli,et al.  Dimensionality reduction in neural models: an information-theoretic generalization of spike-triggered average and covariance analysis. , 2006, Journal of vision.

[58]  Simon Barthelmé,et al.  Improved classification images with sparse priors in a smooth basis. , 2009, Journal of vision.

[59]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[60]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[61]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[62]  R. Shapley,et al.  Receptive field mechanisms of cat X and Y retinal ganglion cells , 1979, The Journal of general physiology.

[63]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[64]  I. Hunter,et al.  The identification of nonlinear biological systems: Volterra kernel approaches , 2007, Annals of Biomedical Engineering.

[65]  Michael E. Tipping,et al.  Analysis of Sparse Bayesian Learning , 2001, NIPS.

[66]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[67]  Maneesh Sahani,et al.  Evidence Optimization Techniques for Estimating Stimulus-Response Functions , 2002, NIPS.

[68]  H. Robbins An Empirical Bayes Approach to Statistics , 1956 .

[69]  David P. Wipf,et al.  A New View of Automatic Relevance Determination , 2007, NIPS.

[70]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[71]  I. Ohzawa,et al.  The neural coding of stereoscopic depth. , 1997, Neuroreport.

[72]  J. Gallant,et al.  Predicting neuronal responses during natural vision , 2005, Network.

[73]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[74]  Richard M. Everson,et al.  Smooth relevance vector machine: a smoothness prior extension of the RVM , 2007, Machine Learning.

[75]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[76]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[77]  William Bialek,et al.  Analyzing Neural Responses to Natural Signals: Maximally Informative Dimensions , 2002, Neural Computation.

[78]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[79]  T. Sharpee,et al.  Estimating linear–nonlinear models using Rényi divergences , 2009, Network.

[80]  G. Casella An Introduction to Empirical Bayes Data Analysis , 1985 .

[81]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .

[82]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.