A flow-system array for the discovery and scale up of inorganic clusters.

The batch synthesis of inorganic clusters can be both time consuming and limited by a lack of reproducibility. Flow-system approaches, now common in organic synthesis, have not been utilized widely for the synthesis of clusters. Herein we combine an automated flow process with multiple batch crystallizations for the screening and scale up of syntheses of polyoxometalates and manganese-based single-molecule magnets. Scale up of the synthesis of these architectures was achieved by programming a multiple-pump reactor system to vary reaction conditions sequentially, and thus explore a larger parameter space in a shorter time than conventionally possible. Also, the potential for using the array as a discovery tool is demonstrated. Successful conditions for product isolation were identified easily from the array of reactions, and a direct route to 'scale up' was then immediately available simply by continuous application of these flow conditions. In all cases, large quantities of phase-pure material were obtained and the time taken for the discovery, repetition and scale up decreased.

[1]  J. Marrot,et al.  [Mo10S10O10(OH)10(H2O)5]: a novel decameric molecular ring showing supramolecular properties , 2000 .

[2]  W. Wernsdorfer,et al.  Enhancing SMM properties via axial distortion of Mn(III)3 clusters. , 2008, Chemical communications.

[3]  Martyn Poliakoff,et al.  Self-optimizing continuous reactions in supercritical carbon dioxide. , 2011, Angewandte Chemie.

[4]  K. Dunbar,et al.  Molecular magnetic materials based on 4d and 5d transition metals. , 2011, Chemical Society reviews.

[5]  E. Diemann,et al.  Molybdenum Blue: A 200‐Year‐Old Mystery Unveiled. , 1996 .

[6]  V. Fedin,et al.  Rapid and Simple Isolation of the Crystalline Molybdenum‐Blue Compounds with Discrete and Linked Nanosized Ring‐Shaped Anions: Na15[Mo {126}{VI}Mo {28}VO462H14(H2O)70]0.5 [Mo {124}{VI}Mo {28}VO457H14(H2O)68]0.5 · ca. 400 H2O and Na22[Mo {118}{VI}Mo {28}VO442H14(H2O)58] · ca. 250 H2O , 1999 .

[7]  George E Kostakis,et al.  Magnetic coordination clusters and networks: synthesis and topological description , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  A. Müller,et al.  Organizational Forms of Matter: An Inorganic Super Fullerene and Keplerate Based on Molybdenum Oxide. , 1998, Angewandte Chemie.

[9]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[10]  L. Cronin,et al.  Unveiling the Transient Template in the Self-Assembly of a Molecular Oxide Nanowheel , 2010, Science.

[11]  W. Wernsdorfer,et al.  Attempting to understand (and control) the relationship between structure and magnetism in an extended family of Mn(6) single-molecule magnets. , 2009, Dalton transactions.

[12]  F. Tuna,et al.  Co-Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants. , 2012, Journal of the American Chemical Society.

[13]  E. Brechin,et al.  The first amino acid manganese cluster: a [Mn(IV)2Mn(III)3] DL-valine cage. , 2009, Dalton transactions.

[14]  M. Murrie Cobalt(II) single-molecule magnets. , 2010, Chemical Society reviews.

[15]  Peter H. Seeberger,et al.  Organic synthesis: Scavengers in full flow. , 2009, Nature chemistry.

[16]  Leroy Cronin,et al.  Solution-phase monitoring of the structural evolution of a Molybdenum Blue nanoring. , 2012, Journal of the American Chemical Society.

[17]  J. Morales,et al.  [Mn(III)4Ln(III)4] calix[4]arene clusters as enhanced magnetic coolers and molecular magnets. , 2010, Journal of the American Chemical Society.

[18]  B. Krebs,et al.  高分子量のイソポリモリブデン酸イオン[Mo36O112(H2O)16]8-の構造と化学結合 Na8[Mo36O112(H2O)16]・58H2Oの結晶構造 , 1991 .

[19]  Leroy Cronin,et al.  Polyoxometalates: Building Blocks for Functional Nanoscale Systems , 2010 .

[20]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[21]  A. Dolbecq,et al.  “Wheeling Templates” in Molecular Oxothiomolybdate Rings: Syntheses, Structures, and Dynamics , 2000 .

[22]  V. Weekman,et al.  Chemical Reaction Engineering , 1974 .

[23]  Müller,et al.  Thirty Electrons "Trapped" in a Spherical Matrix: A Molybdenum Oxide-Based Nanostructured Keplerate Reduced by 36 Electrons. , 2000, Angewandte Chemie.

[24]  A. Müller,et al.  Drawing small cations into highly charged porous nanocontainers reveals "water" assembly and related interaction problems. , 2003, Angewandte Chemie.

[25]  J. Wegner,et al.  Ten Key Issues in Modern Flow Chemistry. , 2011 .

[26]  T. Wirth,et al.  Intelligent microflow: development of self-optimizing reaction systems. , 2011, Angewandte Chemie.

[27]  Timothy F. Jamison,et al.  Continuous flow multi-step organic synthesis , 2010 .

[28]  Eugenio Coronado,et al.  Spin qubits with electrically gated polyoxometalate molecules. , 2007, Nature nanotechnology.

[29]  Achim Müller,et al.  Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. , 2002, Angewandte Chemie.

[30]  Santiago V. Luis,et al.  Chemical reactions and processes under flow conditions , 2009 .

[31]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[32]  E. Cadot,et al.  [Mo12 S12 O12 (OH)12 (H2 O)6 ]: A Cyclic Molecular Cluster Based on the [Mo2 S2 O2 ]2+ Building Block. , 1998, Angewandte Chemie.

[33]  W. Wernsdorfer,et al.  Twisting, bending, stretching: strategies for making ferromagnetic [Mn(III)3] triangles. , 2009, Dalton transactions.

[34]  A. Müller,et al.  Molybdenum blue: A 200 year old mystery unveiled , 1996 .

[35]  A. Müller,et al.  Generation of the triangulo-Group MOV-η-S2 in the “Condensation” of [MoVIO2S2]2 to [MoO2S2(S2)2]2 , 1979 .

[36]  M. Affronte,et al.  Magnetothermal properties of molecule-based materials , 2006, cond-mat/0603368.

[37]  W. Wernsdorfer,et al.  Inducing single-molecule magnetism in a family of loop-of-loops aggregates: heterometallic Mn(40)Na(4) clusters and the homometallic Mn(44) analogue. , 2010, Journal of the American Chemical Society.

[38]  R. Mews Synthesis of N‐Methyliminosulfur Tetrafluoride, CH3NSF4, from the Cation CH3NSF 3+ , 1978 .

[39]  Achim Müller,et al.  [Mo154(NO)14O420(OH)28(H2O)70](25 ± 5)−: A Water‐Soluble Big Wheel with More than 700 Atoms and a Relative Molecular Mass of About 24000 , 1995 .

[40]  Ryan L. Hartman,et al.  Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. , 2011, Angewandte Chemie.

[41]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[42]  A. Müller,et al.  Chameleon water: assemblies confined in nanocapsules , 2005 .

[43]  E. Cadot,et al.  [Mo12S12O12(OH)12 (H2O)6]: A Cyclic Molecular Cluster Based on the [Mo2S2O2]2+ Building Block. , 1998 .

[44]  C. Hill,et al.  Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. , 1998, Chemical reviews.

[45]  E. Brechin,et al.  Twisted molecular magnets. , 2012, Chemical communications.

[46]  A. Decken,et al.  Organometallic mediated radical polymerization of vinyl acetate using bis(imino)pyridine vanadium trichloride complexes. , 2013, Dalton transactions.

[47]  E. Brechin,et al.  Recipes for enhanced molecular cooling. , 2010, Dalton transactions.

[48]  Klavs F Jensen,et al.  An integrated microreactor system for self-optimization of a Heck reaction: from micro- to mesoscale flow systems. , 2010, Angewandte Chemie.

[49]  K. Tytko,et al.  Structure and Bonding in the High Molecular Weight Isopolymolybdate Ion, (Mo36O112(H2O)16)8-. The Crystal Structure of Na8(Mo36O112(H2O)16) ×58 H2O. , 1991 .

[50]  Steven V. Ley,et al.  A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing† , 2011 .

[51]  Valérie Cabuil,et al.  Microfluidics in inorganic chemistry. , 2010, Angewandte Chemie.