The Space of Triangles, Vanishing Theorems, and Combinatorics

A trolling valve safety device limits actuation of a boat engine throttle from its idle position during use of a trolling valve, and vice versa. The trolling valve safety device preferably includes a rotating control plate having mounts for throttle cables so that throttle actuation requires plate rotation. This rotation can be limited by a cam slider which slides under force of trolling valve cables and provides a cam member that inserts in control slots of the control plate. The cam member is positioned in a locking radial slot when the trolling valve is engaged and thereby limits engine throttling. The cam member is positioned in a releasing arcuate position when the trolling valve is disengaged and thereby permits rotation of the plate and associated engine throttling. A stop pin can also extend from the plate to selectively permit or limit rotation of the plate by alignment or disalignment with a groove in the cam slider.

[1]  P. Magyar Schubert polynomials and Bott-Samelson varieties , 1998 .

[2]  A. J. Parameswaran,et al.  Frobenius Splittings and Blow-ups , 1998 .

[3]  Victor Reiner,et al.  Percentage-Avoiding, Northwest Shapes and Peelable Tableaux , 1998, J. Comb. Theory, Ser. A.

[4]  P. Magyar Borel-Weil theorem for con guration varieties and Schur modules , 1998 .

[5]  M. Atiyah THE INDEX OF ELLIPTIC OPERATORS , 1997 .

[6]  P. Magyar Bott-Samelson Varieties and Configuration Spaces , 1996, alg-geom/9611019.

[7]  V. Reiner,et al.  Specht Series for Column-Convex Diagrams , 1995 .

[8]  Victor Reiner,et al.  Key Polynomials and a Flagged Littlewood-Richardson Rule , 1995, J. Comb. Theory A.

[9]  G. Ellingsrud,et al.  Bott's formula and enumerative geometry , 1994, alg-geom/9411005.

[10]  D. Woodcock A vanishing theorem for Schur modules , 1994 .

[11]  W. Fulton,et al.  A compactification of configuration spaces , 1994 .

[12]  W. V. D. Kallen,et al.  On a Grauert-Riemenschneider vanishing theorem for Frobenius split varieties in characteristicp , 1992, alg-geom/9202009.

[13]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[14]  O. Mathieu Filtrations of $G$-modules , 1990 .

[15]  M. Brion,et al.  Groupe de Picard et nombres caracteristiques des varietes spheriques , 1989 .

[16]  W. Fulton,et al.  Intersection rings of spaces of triangles , 1989 .

[17]  P. L. Barz La variete des triplets complets , 1988 .

[18]  M. Peel,et al.  Representations of symmetric groups by bad shapes , 1988 .

[19]  A. Ramanathan Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .

[20]  V. Srinivas,et al.  Normality of Schubert Varieties , 1987 .

[21]  V. B. Mehta,et al.  Frobenius splitting and cohomology vanishing for Schubert varieties , 1985 .

[22]  A. Ramanathan Schubert varieties are arithmetically Cohen-Macaulay , 1985 .

[23]  S. Ramanan,et al.  Projective normality of flag varieties and Schubert varieties , 1985 .

[24]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[25]  David A. Buchsbaum,et al.  Schur Functors and Schur Complexes , 1982 .

[26]  Joel Roberts,et al.  Schubert's enumerative geometry of triangles from a modern viewpoint , 1981 .

[27]  Miloš Božek,et al.  Zur Topologie der Fahnenräume: Definition und Fragestellungen , 1980 .

[28]  Gordon James,et al.  Specht series for skew representations of symmetric groups , 1979 .

[29]  A. Białynicki-Birula Some theorems on actions of algebraic groups , 1973 .

[30]  T. Willmore Algebraic Geometry , 1973, Nature.

[31]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[32]  S. Lang Introduction to Algebraic Geometry , 1972 .

[33]  M. Atiyah,et al.  The Index of elliptic operators. 3. , 1968 .

[34]  M. Atiyah,et al.  A Lefschetz Fixed Point Formula for Elliptic Complexes: I , 1967 .

[35]  R. Bott A residue formula for holomorphic vector-fields , 1967 .

[36]  Robert Steinberg,et al.  Representations of Algebraic Groups , 1963, Nagoya Mathematical Journal.

[37]  J. G. Semple,et al.  The triangle as a geometric variable , 1954 .

[38]  H. Schubert Anzahlgeometrische Behandlung des Dreiecks , 1880 .