Ponn 1 AN OPTIMIZATION-BASED METHOD TO IDENTIFY RELEVANT SCENARIOS FOR TYPE APPROVAL OF AUTOMATED VEHICLES

The objective of this paper is to propose a novel approach for an intelligent selection of relevant scenarios for the certification of automated vehicles. During this process, two main challenges occur. Firstly, since the number of possible traffic situations is unlimited, a selection of a manageable number of representative situations to be tested must be applied during the certification of automated vehicles. Secondly, nowadays a limited number of standardized test cases are used for the type approval of vehicles. This can lead to so-called gaming of tests, which means that the manufacturer optimizes the system’s performance in the predefined test cases. A prominent example are the current discussions about the large differences between the emissions of vehicles in the driving cycle (e.g., WLTP) and in everyday use in road traffic. This paper addresses both stated challenges and exemplifies a method for the system-specific selection of test cases for the certification of automated vehicles, which are not known to the manufacturer in advance. Based on a system analysis and an objective driving behavior characterization, weak spots of the system under test are identified and connected to complex scenarios to be tested. This approach allows an economic and meaningful certification process for automated vehicles.

[1]  John C Hayward,et al.  NEAR-MISS DETERMINATION THROUGH USE OF A SCALE OF DANGER , 1972 .

[2]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[3]  B. Filzek Abstandsverhalten auf Autobahnen : Fahrer und ACC im Vergleich , 2003 .

[4]  D. Richard Kuhn,et al.  Software fault interactions and implications for software testing , 2004, IEEE Transactions on Software Engineering.

[5]  A. Jefferson Offutt,et al.  Combination testing strategies: a survey , 2005, Softw. Test. Verification Reliab..

[6]  B. Graab,et al.  Analyse von Verkehrsunfällen hinsichtlich unterschiedlicher Fahrerpopulationen und daraus ableitbarer Ergebnisse für die Entwicklung adaptiver Fahrerassistenzsysteme , 2008 .

[7]  Kamal Z. Zamli,et al.  A Review of Covering Arrays and Their Application to Software Testing , 2011 .

[8]  Falko Saust,et al.  Effiziente systematische Testgenerierung für Fahrerassistenzsysteme in virtuellen Umgebungen , 2013 .

[9]  Michael Huelsen Knowledge-Based Driver Assistance Systems: Traffic Situation Description and Situation Feature Relevance , 2014 .

[10]  Matthias Althoff,et al.  Online Verification of Automated Road Vehicles Using Reachability Analysis , 2014, IEEE Transactions on Robotics.

[11]  Fabian Schuldt,et al.  Defining and Substantiating the Terms Scene, Situation, and Scenario for Automated Driving , 2015, 2015 IEEE 18th International Conference on Intelligent Transportation Systems.

[12]  Eric Sax,et al.  Model based scenario specification for development and test of automated driving functions , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[13]  Hermann Winner,et al.  The Release of Autonomous Vehicles , 2016 .

[14]  Klaus Dietmayer,et al.  Predicting of Machine Perception for Automated Driving , 2016 .

[15]  Matthias Woehrle,et al.  The UnCoVerCPS Verification Approach to Automated Driving , 2016 .

[16]  Ding Zhao,et al.  Evaluation of automated vehicles in the frontal cut-in scenario — An enhanced approach using piecewise mixture models , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Lutz Eckstein,et al.  Database approach for the sign-off process of highly automated vehicles , 2017 .

[18]  Fabian Schuldt,et al.  Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen mit Hilfe von virtuellen Umgebungen , 2017 .

[19]  Michael Fisher,et al.  Formal verification of autonomous vehicle platooning , 2016, Sci. Comput. Program..

[20]  Amnon Shashua,et al.  On a Formal Model of Safe and Scalable Self-driving Cars , 2017, ArXiv.

[21]  Andreas Pütz,et al.  System validation of highly automated vehicles with a database of relevant traffic scenarios , 2017 .

[22]  M. Althoff,et al.  Kooperative Bewegungsplanung autonomer Fahrzeuge unter Verwendung von Manöver-Templates , 2017 .

[23]  Ding Zhao,et al.  Towards affordable on-track testing for autonomous vehicle — A Kriging-based statistical approach , 2017, 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).

[24]  Gabriel A. Wainer,et al.  SEQUENTIAL EXPERIMENTATION TO EFFICIENTLY TEST AUTOMATED VEHICLES , 2017 .

[25]  Felix Fahrenkrog,et al.  Prospective safety assessment of highly automated driving functions using stochastic traffic simulation , 2017 .

[26]  Hermann Winner,et al.  Functional Decomposition: An Approach to Reduce the Approval Effort for Highly Automated Driving , 2017 .

[27]  Feng Gao,et al.  Automatic Generation Method of Test Scenario for ADAS Based on Complexity , 2017, ICVS 2017.

[28]  Matthias Althoff,et al.  Automatic Generation of Safety-Critical Test Scenarios for Collision Avoidance of Road Vehicles , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[29]  H. Winner,et al.  Funktionale Dekomposition - Ein Beitrag zur Überwindung der Parameterraumexplosion bei der Validation von höher automatisiertem Fahren , 2018 .

[30]  Ding Zhao,et al.  Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers , 2016, IEEE Transactions on Intelligent Transportation Systems.

[31]  Markus Maurer,et al.  A Method for an Efficient, Systematic Test Case Generation for Advanced Driver Assistance Systems in Virtual Environments , 2018 .

[32]  Feng Gao,et al.  Test Scenario Design for Intelligent Driving System Ensuring Coverage and Effectiveness , 2018, International Journal of Automotive Technology.

[33]  Wei Chen,et al.  An Ontology-based Approach to Generate the Advanced Driver Assistance Use Cases of Highway Traffic , 2018 .

[34]  Mykel J. Kochenderfer,et al.  Adaptive Stress Testing for Autonomous Vehicles , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[35]  Markus Maurer,et al.  Scenarios for Development, Test and Validation of Automated Vehicles , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[36]  Markus Maurer,et al.  Ontology based Scene Creation for the Development of Automated Vehicles , 2017, 2018 IEEE Intelligent Vehicles Symposium (IV).

[37]  Junqiang Xi,et al.  Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation , 2019 .