On the computation of the polar FFT

[1]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[2]  David H. Bailey,et al.  The Fractional Fourier Transform and Applications , 1991, SIAM Rev..

[3]  K. Gröchenig A discrete theory of irregular sampling , 1993 .

[4]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[5]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[6]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[7]  Gabriele Steidl,et al.  A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..

[8]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[9]  Gabriele Steidl,et al.  A new linogram algorithm for computerized tomography , 2001 .

[10]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[11]  Michael Elad,et al.  Accurate and fast discrete polar Fourier transform , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[12]  D. Donoho,et al.  Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .

[13]  Ññøøøññøø Blockin Random Sampling of Multivariate Trigonometric Polynomials , 2004 .

[14]  J. Lakey,et al.  Time-frequency and time-scale methods , 2005 .

[15]  Stefan Kunis,et al.  Time and memory requirements of the Nonequispaced FFT , 2006 .

[16]  Jianwei Ma,et al.  Combined Complex Ridgelet Shrinkage and Total Variation Minimization , 2006, SIAM J. Sci. Comput..

[17]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[18]  D. Donoho,et al.  Fast and accurate Polar Fourier transform , 2006 .

[19]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , 2022 .