On the computation of the polar FFT
暂无分享,去创建一个
[1] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[2] David H. Bailey,et al. The Fractional Fourier Transform and Applications , 1991, SIAM Rev..
[3] K. Gröchenig. A discrete theory of irregular sampling , 1993 .
[4] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[5] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[6] G. Beylkin. On the Fast Fourier Transform of Functions with Singularities , 1995 .
[7] Gabriele Steidl,et al. A note on fast Fourier transforms for nonequispaced grids , 1998, Adv. Comput. Math..
[8] Antony Ware,et al. Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..
[9] Gabriele Steidl,et al. A new linogram algorithm for computerized tomography , 2001 .
[10] Gabriele Steidl,et al. Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .
[11] Michael Elad,et al. Accurate and fast discrete polar Fourier transform , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.
[12] D. Donoho,et al. Fast Slant Stack: a notion of Radon transform for data in a Cartesian grid which is rapidly computable, algebraically exact, geometrically faithful and invertible , 2003 .
[13] Ññøøøññøø Blockin. Random Sampling of Multivariate Trigonometric Polynomials , 2004 .
[14] J. Lakey,et al. Time-frequency and time-scale methods , 2005 .
[15] Stefan Kunis,et al. Time and memory requirements of the Nonequispaced FFT , 2006 .
[16] Jianwei Ma,et al. Combined Complex Ridgelet Shrinkage and Total Variation Minimization , 2006, SIAM J. Sci. Comput..
[17] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[18] D. Donoho,et al. Fast and accurate Polar Fourier transform , 2006 .
[19] A.,et al. FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , 2022 .