Spiking Systematics in Some CO2 Laser Models

Abstract The CO 2 laser is a complex dynamical system that has been investigated extensively both experimentally and through numerical simulations. As a result, a number of models exist for this laser, famed for providing satisfactory agreement between numerical and experimental observations. But the laser involves a large number of freely tunable control parameters whose impact on its performance and stability is not known in detail. The spontaneous emergence and organization of laser stability phases are also poorly understood. Here, we review recent progress in the classification of laser spiking, periodic or nonperiodic self-pulsations, predicted for CO 2 lasers with modulated parameters and with feedback, instantaneous or delayed. The unfolding of spiking is classified with the help of numerically obtained high-resolution stability charts for experimentally accessible control parameters. Such stability charts display novel regular and irregular features, suggesting that the laser control parameter planes harbor remarkable symmetries not yet accounted for theoretically but which are experimentally within reach. High-resolution stability charts put stringent tests on the reliability and accuracy of current models in forecasting laser dynamics.

[1]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Bernd Krauskopf,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[3]  P. Glendinning Chaos in Dynamical Systems., by E. Ott , 1994 .

[4]  Jason A. C. Gallas,et al.  The Structure of Infinite Periodic and Chaotic Hub Cascades in Phase Diagrams of Simple Autonomous Flows , 2010, Int. J. Bifurc. Chaos.

[5]  J. G. Freire,et al.  Relative abundance and structure of chaotic behavior: the nonpolynomial Belousov-Zhabotinsky reaction kinetics. , 2009, The Journal of chemical physics.

[6]  Alexander N. Pisarchik,et al.  Theoretical and experimental study of discrete behavior of Shilnikov chaos in a CO2 laser , 2001 .

[7]  Jordi Garcia-Ojalvo,et al.  Synchronization and communication with chaotic laser systems , 2005 .

[8]  F. T. Arecchi,et al.  Deterministic chaos in laser with injected signal , 1984 .

[9]  Global stability and oscillation properties of a two-level model for a class-B laser with feedback , 1997 .

[10]  Erik Lindberg,et al.  Discontinuous Spirals of Stable Periodic Oscillations , 2013, Scientific Reports.

[11]  R. Gilmore,et al.  The Topology of Chaos: Alice in Stretch and Squeezeland , 2002 .

[12]  Didier Dangoisse,et al.  Shilnikov Dynamics in a Passive Q-Switching Laser , 1988 .

[13]  J. Gallas,et al.  Nonchaos-Mediated Mixed-Mode Oscillations in an Enzyme Reaction System. , 2014, The journal of physical chemistry letters.

[14]  R. Meucci,et al.  Highly dissipative Hénon map behavior in the four-level model of the CO2 laser with modulated losses , 1995 .

[15]  F. T. Arecchi,et al.  Stochastic and coherence resonance in lasers: homoclinic chaos and polarization bistability , 2009 .

[16]  J. G. Freire,et al.  Stern-Brocot trees in the periodicity of mixed-mode oscillations. , 2011, Physical chemistry chemical physics : PCCP.

[17]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[18]  Helena E. Nusse,et al.  Periodicity versus chaos in the dynamics of cobweb models , 1996 .

[19]  S Boccaletti,et al.  Competition of synchronization domains in arrays of chaotic homoclinic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Edson D. Leonel,et al.  Parameter space for a dissipative Fermi–Ulam model , 2011 .

[21]  M. L. Asquini,et al.  PassiveQ-switching in lasers with saturable absorbers: Improved treatment of a four-level model , 1983 .

[22]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[23]  Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO , 2011 .

[24]  P. Glendinning,et al.  Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[26]  Analytical studies on the period doubling bifurcations from the harmonic solutions of the parameter modulated single mode two-level laser , 1994 .

[27]  Riccardo Meucci,et al.  Controlling chaos by negative feedback of subharmonic components , 1997 .

[28]  C. Patel,et al.  Continuous-Wave Laser Action on Vibrational-Rotational Transitions of C O 2 , 1964 .

[29]  Lyapunov exponents and return maps for a model of a laser with saturable absorber , 1993 .

[30]  Politi,et al.  CO2 laser dynamics with feedback. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  Nonlinear dynamics of a CO2 laser with current modulation and cavity detuning , 2001 .

[32]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[33]  Antonio Politi,et al.  Toda potential in laser equations , 1985 .

[34]  Pierre Glorieux,et al.  Repetitive passive Q-switching and bistability in lasers with saturable absorbers , 1983 .

[35]  Meucci,et al.  Effective two-dimensional model for CO2 lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  Leon Glass,et al.  Bifurcation structures in two-dimensional maps: The endoskeletons of shrimps , 2013 .

[37]  M. Gallas,et al.  Distribution of chaos and periodic spikes in a three-cell population model of cancer , 2014 .

[38]  R. Meucci,et al.  Self-focusing effects in a nematic liquid crystal at 10.6 $\mathsf{\mu}$m , 2004 .

[39]  Riccardo Meucci,et al.  Analysis of the dynamical behavior of a Q-switched CO2 laser: the linear and the nonlinear regime , 1992 .

[40]  Didier Dangoisse,et al.  Behavior of a CO2 laser under loss modulation: critical analysis of different theoretical models , 1992 .

[41]  Vassilios Kovanis,et al.  Labyrinth bifurcations in optically injected diode lasers , 2010 .

[42]  B. Krauskopf,et al.  A numerical bifurcation study of a basic model of two coupled lasers with saturable absorption , 2014 .

[43]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[44]  A. Laubereau,et al.  The long journey to the laser and its rapid development after 1960 , 2011 .

[45]  Leo W. Hollberg,et al.  1. Stabilizing diode lasers to high-finesse cavities , 2003 .

[46]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[47]  I Leyva,et al.  Propensity criterion for networking in an array of coupled chaotic systems. , 2003, Physical review letters.

[48]  Pierre Glorieux,et al.  Improved correlation dimension estimates through change of variable , 1992 .

[49]  Lucas Illing Digital Communication using Chaos and Nonlinear Dynamics , 2006 .

[50]  Jason A. C. Gallas,et al.  Periodic oscillations of the forced Brusselator , 2015 .

[51]  J. Gallas,et al.  Accumulation boundaries: codimension-two accumulation of accumulations in phase diagrams of semiconductor lasers, electric circuits, atmospheric and chemical oscillators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[52]  Thorsten Pöschel,et al.  Stern-Brocot trees in spiking and bursting of sigmoidal maps , 2012 .

[53]  R Meucci,et al.  Stabilization of unstable fixed points in the dynamics of a laser with feedback. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Robert C. Hilborn,et al.  Chaos And Nonlinear Dynamics: An Introduction for Scientists and Engineers , 1994 .

[55]  Arecchi,et al.  Dynamic behavior and onset of low-dimensional chaos in a modulated homogeneously broadened single-mode laser: Experiments and theory. , 1986, Physical review. A, General physics.

[56]  C. Meyer,et al.  Influence des phénomènes de relaxation sur la forme des impulsions fournies par un laser CO2 déclenché par un absorbant saturable , 1975 .

[57]  Andrey Shilnikov,et al.  Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  J. G. Freire,et al.  Stern-Brocot trees in cascades of mixed-mode oscillations and canards in the extended Bonhoeffer-van der Pol and the FitzHugh-Nagumo models of excitable systems , 2011 .

[59]  Pierre Glorieux,et al.  TOPOLOGICAL ANALYSIS OF CHAOTIC SIGNALS FROM A CO2 LASER WITH MODULATED LOSSES , 1993 .

[60]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[61]  Thorsten Pöschel,et al.  Characterization of the stability of semiconductor lasers with delayed feedback according to the Lang-Kobayashi model , 2013 .

[62]  J. Gallas,et al.  Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers , 2015 .

[63]  Tim N. Palmer,et al.  Modelling: Build imprecise supercomputers , 2015, Nature.

[64]  Meucci,et al.  Laser dynamics with competing instabilities. , 1987, Physical review letters.

[65]  A. Fioretti,et al.  Frequency tuning of homoclinic chaos in an infrared laser with an osmium tetroxide intracavity saturable absorber , 1995 .

[66]  Jana Vogel,et al.  Semiconductor Lasers Stability Instability And Chaos , 2016 .

[67]  Leandro Junges,et al.  Intricate routes to chaos in the Mackey-Glass delayed feedback system , 2012 .

[68]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[69]  R. Meucci,et al.  CO(2) laser with modulated losses: Theoretical models and experiments in the chaotic regime. , 1993, Chaos.

[70]  F. Arecchi,et al.  Swept dynamics of a CO2 laser near threshold two-versus four-level model , 1988 .

[71]  Glorieux,et al.  Chaos in a CO2 laser with modulated parameters: Experiments and numerical simulations. , 1987, Physical review. A, General physics.

[72]  J. Gallas,et al.  Impact of delayed feedback of arbitrary duration in self-pulsations of a CO_2 laser , 2016 .

[73]  Leandro Junges,et al.  Frequency and peak discontinuities in self-pulsations of a CO2 laser with feedback , 2012 .

[74]  Meucci,et al.  Dynamics of a CO2 laser with delayed feedback: The short-delay regime. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[75]  Ira B. Schwartz,et al.  Global manifold control in a driven laser: sustaining chaos and regular dynamics , 2004 .

[76]  Pierre Suret,et al.  Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics , 2014 .

[77]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[78]  K. Alan Shore,et al.  Physics and applications of laser diode chaos , 2015 .

[79]  V N Chizhevsky Multistability in dynamical systems induced by weak periodic perturbations. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  E. Doedel,et al.  Multiparameter bifurcations and mixed-mode oscillations in Q-switched CO2 lasers. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Glorieux,et al.  Laser chaotic attractors in crisis. , 1986, Physical review letters.

[82]  John Argyris,et al.  An exploration of dynamical systems and chaos , 2015 .

[83]  Hong,et al.  Deterministic chaos in passive Q-switching pulsation of a CO2 laser with saturable absorber. , 1988, Physical review letters.

[84]  E. Bollt,et al.  Stochastic bifurcation in a driven laser system: experiment and theory. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[86]  Riccardo Meucci,et al.  Self-organization of pulsing and bursting in a CO2 laser with opto-electronic feedback. , 2015, Chaos.

[87]  Celso Grebogi,et al.  Bifurcation rigidity , 1999 .

[88]  Meucci,et al.  Generation of chaotic dynamics by feedback on a laser. , 1986, Physical review. A, General physics.

[89]  J. G. Freire,et al.  Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Onset of subcritical bifurcation in a CO2 laser with feedback , 1990 .

[91]  S. Donati,et al.  Chaos and high-level dynamics in coupled lasers and their applications , 2012 .

[92]  F. Arecchi,et al.  Delayed bifurcation at the threshold of a swept gain CO2 laser , 1989 .

[93]  K. Alan Shore,et al.  Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers , 2005 .

[94]  F. Arecchi,et al.  Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser , 1982 .

[96]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[97]  F T Arecchi,et al.  Synchronization of homoclinic chaos. , 2001, Physical review letters.

[98]  Holokx A. Albuquerque,et al.  Bifurcation structures and transient chaos in a four-dimensional Chua model , 2013, 1312.1933.