Stress intensity factors computation for bending plates with extended finite element method

SUMMARY The modelization of bending plates with through-the-thickness cracks is investigated. We consider the Kirchhoff–Love plate model, which is valid for very thin plates. Reduced Hsieh–Clough–Tocher triangles and reduced Fraejis de Veubeke–Sanders quadrilaterals are used for the numerical discretization. We apply the eXtended Finite Element Method strategy: enrichment of the finite element space with the asymptotic bending singularities and with the discontinuity across the crack. The main point, addressed in this paper, is the numerical computation of stress intensity factors. For this, two strategies, direct estimate and J-integral, are described and tested. Some practical rules, dealing with the choice of some numerical parameters, are underlined. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[2]  Michel Salaün,et al.  eXtended finite element methods for thin cracked plates with Kirchhoff–Love theory , 2010 .

[3]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[4]  Alan T. Zehnder,et al.  Crack tip stress fields for thin, cracked plates in bending, shear and twisting: A comparison of plate theory and three-dimensional elasticity theory solutions , 2000 .

[5]  D. Attou,et al.  Une théorie asymptotique des plaques minces piézoélectriques , 1987 .

[6]  Serge Nicaise,et al.  Optimal convergence analysis for the extended finite element method , 2011 .

[7]  Ted Belytschko,et al.  Dynamic Fracture of Shells Subjected to Impulsive Loads , 2009 .

[8]  Jean-François Remacle,et al.  A substructured FE‐shell/XFE‐3D method for crack analysis in thin‐walled structures , 2007 .

[9]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  T. Belytschko,et al.  Non‐linear analysis of shells with arbitrary evolving cracks using XFEM , 2005 .

[12]  Nicolas Moës,et al.  X-FEM, de nouvelles frontières pour les éléments finis , 2002 .

[13]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[14]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[15]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[16]  P. Destuynder,et al.  Une théorie asymptotique des plaques minces en élasticité linéaire , 1986 .

[17]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[18]  Alan T. Zehnder,et al.  Stress Intensity Factors for Plate Bending and Shearing Problems , 1994 .

[19]  G. Burton Sobolev Spaces , 2013 .

[20]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[21]  Alan T. Zehnder,et al.  Computation of membrane and bending stress intensity factors for thin, cracked plates , 1995 .

[22]  Ted Belytschko,et al.  Analysis of fracture in thin shells by overlapping paired elements , 2006 .

[23]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[24]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[25]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[26]  T. Belytschko,et al.  Analysis of Finite Strain Anisotropic Elastoplastic Fracture in Thin Plates and Shells , 2006 .

[27]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[28]  Jérémie Lasry,et al.  Calculs de plaques fissurées en flexion avec la méthode des éléments finis étendue (XFEM). (Cracked plates in bending computations with the extended finite element method (XFEM)) , 2009 .

[29]  C. Hui,et al.  A theory for the fracture of thin plates subjected to bending and twisting moments , 1993 .

[30]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .

[31]  Ph. Destuynder,et al.  Sur une interpretation math'ematique de l''int'egrale de Rice en th'eorie de la rupture fragile , 1981 .