Oxetane Grafts Installed Site‐Selectively on Native Disulfides to Enhance Protein Stability and Activity In Vivo

Abstract A four‐membered oxygen ring (oxetane) can be readily grafted into native peptides and proteins through site‐selective bis‐alkylation of cysteine residues present as disulfides under mild and biocompatible conditions. The selective installation of the oxetane graft enhances stability and activity, as demonstrated for a range of biologically relevant cyclic peptides, including somatostatin, proteins, and antibodies, such as a Fab arm of the antibody Herceptin and a designed antibody DesAb‐Aβ against the human Amyloid‐β peptide. Oxetane grafting of the genetically detoxified diphtheria toxin CRM197 improves significantly the immunogenicity of this protein in mice, which illustrates the general utility of this strategy to modulate the stability and biological activity of therapeutic proteins containing disulfides in their structures.

[1]  G. Melacini,et al.  Multiconformational NMR analysis of sandostatin (octreotide): equilibrium between beta-sheet and partially helical structures. , 1997, Biochemistry.

[2]  R. H. Grubbs,et al.  Die Ringschluß‐Olefin‐Metathese als hocheffiziente Methode zur Synthese kovalent querverbrückter Peptide , 1998 .

[3]  Helen E Blackwell,et al.  Highly Efficient Synthesis of Covalently Cross-Linked Peptide Helices by Ring-Closing Metathesis. , 1998, Angewandte Chemie.

[4]  G. Verdine,et al.  An All-Hydrocarbon Cross-Linking System for Enhancing the Helicity and Metabolic Stability of Peptides , 2000 .

[5]  D. Fairlie,et al.  Single turn peptide alpha helices with exceptional stability in water. , 2005, Journal of the American Chemical Society.

[6]  C. Hudis Trastuzumab--mechanism of action and use in clinical practice. , 2007, The New England journal of medicine.

[7]  Erick M. Carreira,et al.  Oxetane als vielseitige Bausteine in der Wirkstoff‐Forschung und Synthese , 2010 .

[8]  E. Carreira,et al.  Oxetanes as versatile elements in drug discovery and synthesis. , 2010, Angewandte Chemie.

[9]  Christopher J. White,et al.  Contemporary strategies for peptide macrocyclization. , 2011, Nature chemistry.

[10]  R. Rappuoli,et al.  Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197 , 2012, Proceedings of the National Academy of Sciences.

[11]  Alexander M. Spokoyny,et al.  A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. , 2013, Journal of the American Chemical Society.

[12]  Joshua A. Kritzer,et al.  Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. , 2013, ACS chemical biology.

[13]  E. Carreira,et al.  Oxetanyl Peptides: Novel Peptidomimetic Modules for Medicinal Chemistry , 2014, Organic letters.

[14]  Miriam Góngora-Benítez,et al.  Multifaceted roles of disulfide bonds. Peptides as therapeutics. , 2014, Chemical reviews.

[15]  Nathaniel G. Martin,et al.  Synthesis and structure of oxetane containing tripeptide motifs. , 2014, Chemical communications.

[16]  D. Spring,et al.  Functionalised staple linkages for modulating the cellular activity of stapled peptides , 2014 .

[17]  Saikat Ghosh,et al.  Elucidating the Role of Disulfide Bond on Amyloid Formation and Fibril Reversibility of Somatostatin-14 , 2014, The Journal of Biological Chemistry.

[18]  R. Adamo,et al.  Sugar–Protein Connectivity Impacts on the Immunogenicity of Site-Selective Salmonella O-Antigen Glycoconjugate Vaccines , 2015, Angewandte Chemie.

[19]  Amos B. Smith,et al.  Peptide/Protein Stapling and Unstapling: Introduction of s-Tetrazine, Photochemical Release, and Regeneration of the Peptide/Protein , 2015, Journal of the American Chemical Society.

[20]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[21]  D. Wolan,et al.  Acetone-Linked Peptides: A Convergent Approach for Peptide Macrocyclization and Labeling. , 2015, Angewandte Chemie.

[22]  M. Vendruscolo,et al.  Rational design of antibodies targeting specific epitopes within intrinsically disordered proteins , 2015, Proceedings of the National Academy of Sciences.

[23]  R. Derda,et al.  Rapid biocompatible macrocyclization of peptides with decafluoro-diphenylsulfone† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc03856a , 2016, Chemical science.

[24]  N. Cramer,et al.  Converting disulfide bridges in native peptides to stable methylene thioacetals , 2016, Chemical science.

[25]  Nikolaus Krall,et al.  Site-selective protein-modification chemistry for basic biology and drug development. , 2016, Nature chemistry.

[26]  Heather Donaghy,et al.  Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates , 2016, mAbs.

[27]  Tao Wang,et al.  Site‐Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome , 2016, Chemistry.

[28]  P. Dai,et al.  Nitrogen Arylation for Macrocyclization of Unprotected Peptides. , 2016, Journal of the American Chemical Society.

[29]  A. Yudin,et al.  Oxadiazole grafts in peptide macrocycles , 2016, Nature Chemistry.

[30]  Jiye Shi,et al.  ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation , 2016, mAbs.

[31]  Antoine Maruani,et al.  Recent advances in the construction of antibody-drug conjugates. , 2016, Nature chemistry.

[32]  V. Masignani,et al.  Preclinical studies on new proteins as carrier for glycoconjugate vaccines. , 2016, Vaccine.

[33]  P. Schultz,et al.  Enhancing protein stability with extended disulfide bonds , 2016, Proceedings of the National Academy of Sciences.

[34]  W. Pereira-Manfro,et al.  A cross-reacting material CRM197 conjugate vaccine induces diphtheria toxin neutralizing antibody response in children and adolescents infected or not with HIV. , 2017, Vaccine.

[35]  Kevin M Brindle,et al.  Site‐Selective Modification of Proteins with Oxetanes , 2017, Chemistry.

[36]  Michele Vendruscolo,et al.  Selective targeting of primary and secondary nucleation pathways in Aβ42 aggregation using a rational antibody scanning method , 2017, Science Advances.