Latent-model robustness in structural measurement error models

We present methods for diagnosing the effects of model misspecification of the true-predictor distribution in structural measurement error models. We first formulate latent-model robustness theoretically. Then we provide practical techniques for examining the adequacy of an assumed latent predictor model. The methods are illustrated via analytical examples, application to simulated data and with data from a study of coronary heart disease. Copyright 2006, Oxford University Press.

[1]  D. W. Schafer Semiparametric Maximum Likelihood for Measurement Error Model Regression , 2001, Biometrics.

[2]  P. Green,et al.  Mixture models in measurement error problems, with reference to epidemiological studies , 2002 .

[3]  R Henderson,et al.  Joint modelling of longitudinal measurements and event time data. , 2000, Biostatistics.

[4]  Raymond J. Carroll,et al.  Conditional scores and optimal scores for generalized linear measurement-error models , 1987 .

[5]  J. R. Cook,et al.  Simulation-Extrapolation Estimation in Parametric Measurement Error Models , 1994 .

[6]  D. Ruppert,et al.  Measurement Error in Nonlinear Models , 1995 .

[7]  S B Hulley,et al.  Overall and coronary heart disease mortality rates in relation to major risk factors in 325,348 men screened for the MRFIT. Multiple Risk Factor Intervention Trial. , 1986, American heart journal.

[8]  J. R. Cook,et al.  Simulation-Extrapolation: The Measurement Error Jackknife , 1995 .

[9]  Leonard A. Stefanski,et al.  The effects of measurement error on parameter estimation , 1985 .

[10]  R J Carroll,et al.  Flexible Parametric Measurement Error Models , 1999, Biometrics.

[11]  Marie Davidian,et al.  Conditional Estimation for Generalized Linear Models When Covariates Are Subject‐Specific Parameters in a Mixed Model for Longitudinal Measurements , 2004, Biometrics.

[12]  M Davidian,et al.  Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data , 2001, Biometrics.

[13]  Marie Davidian,et al.  A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time‐to‐Event Data , 2002, Biometrics.

[14]  K. Roeder,et al.  A Semiparametric Mixture Approach to Case-Control Studies with Errors in Covariables , 1996 .