A Nonlinear Case of the 1-D Backward Heat Problem: Regularization and Error Estimate
暂无分享,去创建一个
Pham Hoang Quan | Dang Duc Trong | Nguyen Huy Tuan | D. D. Trong | N. Tuan | P. H. Quan | Tran Vu Khanh | T. Khanh
[1] M. Denche,et al. Quasi-boundary Value Method for Non-well Posed Problem for a Parabolic Equation with Integral Boundary Condition , 2001 .
[2] James F. Epperson,et al. A comparison of regularizations for an ill-posed problem , 1998, Math. Comput..
[3] Robert Lattès,et al. Méthode de quasi-réversibilbilité et applications , 1967 .
[4] Seth F. Oppenheimer,et al. Quasireversibility Methods for Non-Well-Posed Problems , 1994 .
[5] M. Protter,et al. Unique continuation for parabolic differential equations and inequalities , 1961 .
[6] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[7] K. Miller,et al. Stabilized quasi-reversibilite and other nearly-best-possible methods for non-well-posed problems , 1973 .
[8] Karen A. Ames,et al. Continuous dependence on modeling for some well-posed perturbations of the backward heat equation , 1999 .
[9] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[10] P. H. Quan,et al. A backward nonlinear heat equation: regularization with error estimates , 2005 .
[11] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.