Trading strategies generated by Lyapunov functions

Functional portfolio generation, initiated by E.R. Fernholz almost 20 years ago, is a methodology for constructing trading strategies with controlled behavior. It is based on very weak and descriptive assumptions on the covariation structure of the underlying market, and needs no estimation of model parameters. In this paper, the corresponding generating functions G$G$ are interpreted as Lyapunov functions for the vector process μ$\mu $ of relative market weights; that is, via the property that the process G(μ)$G (\mu )$ is a supermartingale under an appropriate change of measure. This point of view unifies, generalizes, and simplifies many existing results, and allows the formulation of conditions under which it is possible to outperform the market portfolio over appropriate time horizons. From a probabilistic point of view, the approach offered here yields results concerning the interplay of stochastic discount factors and concave transformations of semimartingales on compact domains.

[1]  P. A. Meyer,et al.  Un Cours sur les Intégrales Stochastiques , 2002 .

[2]  J. Ruf,et al.  Convergence of local supermartingales and Novikov-Kazamaki type conditions for processes with jumps , 2014, 1411.6229.

[3]  I. Karatzas,et al.  Strong solutions of stochastic equations with rank-based coefficients , 2011, 1109.3823.

[4]  Adrian D. Banner,et al.  HYBRID ATLAS MODELS , 2009, 0909.0065.

[5]  Gordan Zitkovic,et al.  Stability of utility-maximization in incomplete markets , 2007, 0706.0474.

[6]  A. Mijatović,et al.  On the Loss of the Semimartingale Property at the Hitting Time of a Level , 2013, 1304.1377.

[7]  P. Protter Stochastic integration and differential equations , 1990 .

[8]  Ioannis Karatzas,et al.  Diversity-weighted portfolios with negative parameter , 2015 .

[9]  Elements of Stochastic Calculus via Regularization , 2006, math/0603224.

[10]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[11]  Nastasiya F. Grinberg Semimartingale decomposition of convex functions of continuous semimartingales by Brownian perturbation , 2009, 0907.0382.

[12]  Jean Jacod,et al.  Semimartingales and Markov processes , 1980 .

[13]  Alexander Schied,et al.  Model-Free Portfolio Theory and Its Functional Master Formula , 2016, SIAM J. Financial Math..

[14]  Ting-Kam Leonard Wong,et al.  The geometry of relative arbitrage , 2014, 1402.3720.

[15]  E. Fernholz Stochastic Portfolio Theory , 2002 .

[16]  E. Robert Fernholz,et al.  Portfolio Generating Functions , 1998 .

[17]  I. Karatzas,et al.  Stochastic Portfolio Theory: an Overview , 2009 .

[18]  N. Bouleau Formules de changement de variables , 1984 .

[19]  A. N. Shiryaev,et al.  VECTOR STOCHASTIC INTEGRALS AND THE FUNDAMENTAL THEOREMS OF ASSET PRICING , 2003 .

[20]  D. Varberg,et al.  Another Proof that Convex Functions are Locally Lipschitz , 1974 .

[21]  Volatility and Arbitrage , 2016, 1608.06121.

[22]  Jean-Charles Rochet,et al.  Changes of numéraire, changes of probability measure and option pricing , 1995, Journal of Applied Probability.

[23]  P. Vallois,et al.  Ito formula forC1-functions of semimartingales , 1996 .

[24]  Robert Fernholz,et al.  Equity portfolios generated by functions of ranked market weights , 1999, Finance Stochastics.

[25]  P. Meyer,et al.  Introduction et notations generales , 1976 .

[26]  I. Karatzas,et al.  Relative arbitrage in volatility-stabilized markets , 2005 .

[27]  Local times of ranked continuous semimartingales , 2008 .

[28]  C. Stricker,et al.  Fonctions convexes et semimartingales , 1983 .

[29]  Martin Herdegen NO‐ARBITRAGE IN A NUMÉRAIRE‐INDEPENDENT MODELING FRAMEWORK , 2017 .

[30]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[31]  R. Rockafellar Convex Analysis: (pms-28) , 1970 .

[32]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[33]  Robert Fernholz,et al.  Diversity and relative arbitrage in equity markets , 2008, Finance Stochastics.