Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites

We review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.

[1]  I. Babuska,et al.  The generalized finite element method , 2001 .

[2]  Daosheng Ling,et al.  Nonlinear Fracture Analysis of Delamination Crack Jumps in Laminated Composites , 2011 .

[3]  G. Genin,et al.  Composite Laminates in Plane Stress: Constitutive Modeling and Stress Redistribution due to Matrix Cracking , 2005 .

[4]  Xianyue Su,et al.  An Accurate and Efficient Augmented Finite Element Method for Arbitrary Crack Interactions , 2013 .

[5]  W. Morris,et al.  Growth rate models for short surface cracks in AI 2219-T851 , 1981 .

[6]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[7]  Statistical Mechanics of Early Growth of Fatigue Cracks , 1983 .

[8]  L. J. Sluys,et al.  A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .

[9]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[10]  G. Morscher,et al.  In‐Plane Cracking Behavior and Ultimate Strength for 2D Woven and Braided Melt‐Infiltrated SiC/SiC Composites Tensile Loaded in Off‐Axis Fiber Directions , 2007 .

[11]  W. Morris,et al.  A high accuracy automated strain-field mapper , 1990 .

[12]  Ignace Verpoest,et al.  Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis , 2005 .

[13]  B. N. Cox,et al.  A STATISTICAL MODEL OF INTERMITTENT SHORT FATIGUE CRACK GROWTH , 1987 .

[14]  W. Morris,et al.  MODEL-BASED STATISTICAL ANALYSIS OF SHORT FATIGUE CRACK GROWTH IN Ti 6Al-2Sn-4Zr-6Mo , 1987 .

[15]  Liyong Tong,et al.  A damage zone model for the failure analysis of adhesively bonded joints , 1998 .

[16]  Stéphane Bordas,et al.  On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM) , 2011 .

[17]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[18]  Georg J. Schmitz,et al.  Integrative computational materials engineering : concepts and applications of a modular simulation platform , 2012 .

[19]  Ignace Verpoest,et al.  Modelling of the internal structure and deformability of textile reinforcements: WiseTex software , 2002 .

[20]  W. Ludwig,et al.  In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites , 2011 .

[21]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[22]  Qingda Yang,et al.  Cohesive models for damage evolution in laminated composites , 2005 .

[23]  S. Torquato,et al.  Reconstructing random media , 1998 .

[24]  Adrian P. Mouritz,et al.  Review of applications for advanced three-dimensional fibre textile composites , 1999 .

[25]  Endel V. Iarve,et al.  Mesh independent modelling of cracks by using higher order shape functions , 2003 .

[26]  Carlos González,et al.  Multiscale modeling of fracture in fiber-reinforced composites , 2006 .

[27]  A. S. Argon,et al.  Fracture of Composites , 1972 .

[28]  Brian N. Cox,et al.  Failure mechanisms of 3D woven composites in tension, compression, and bending , 1994 .

[29]  J. H. Westbrook,et al.  Ultrahigh-Temperature Materials for Jet Engines , 2003 .

[30]  Lori Graham-Brady,et al.  Stochastic Morphological Modeling of Random Multiphase Materials , 2008 .

[31]  L. J. Sluys,et al.  Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure , 2010 .

[32]  Brian N. Cox,et al.  Concepts for bridged cracks in fracture and fatigue , 1994 .

[33]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. , 2008 .

[34]  Zhaofeng Geng,et al.  An improved model of rigid bodies for plain-weave fabrics based on the dynamics of multibody systems , 2010 .

[35]  A. Evans,et al.  Failure Mechanisms in Ceramic‐Fiber/Ceramic‐Matrix Composites , 1985 .

[36]  Pedro P. Camanho,et al.  A damage model for the simulation of delamination in advanced composites under variable-mode loading , 2006 .

[37]  F. Zok,et al.  Remediation of a constitutive model for ceramic composite laminates , 2013 .

[38]  A. Gessler,et al.  Ceramic Matrix Composites: A Challenge in Space‐Propulsion Technology Applications , 2005 .

[39]  Xuekun Sun,et al.  Digital-element simulation of textile processes , 2001 .

[40]  John W. Cahn,et al.  Phase Separation by Spinodal Decomposition in Isotropic Systems , 1965 .

[41]  Brian N. Cox,et al.  A binary model of textile composites—II. The elastic regime , 1995 .

[42]  M. S. Dadkhah,et al.  Simple models for triaxially braided composites , 1995 .

[43]  Anthony G. Evans,et al.  MECHANICS OF MATERIALS: TOP-DOWN APPROACHES TO FRACTURE , 2000 .

[44]  M. C. Nichols,et al.  X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites , 1993, Science.

[45]  N. Fleck,et al.  Microbuckle initiation in fibre composites : A finite element study , 1995 .

[46]  R. Ritchie,et al.  Small fatigue cracks , 1986 .

[47]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[48]  D. Marshall,et al.  Characterizing In‐Plane Geometrical Variability in Textile Ceramic Composites , 2015 .

[49]  Ian Sinclair,et al.  In situ high resolution synchrotron x-ray tomography of fatigue crack closure micromechanisms , 2004 .

[50]  Jacob Fish,et al.  Multiscale Methods: Bridging the Scales in Science and Engineering , 2009 .

[51]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[52]  Bryan Cheeseman,et al.  Mechanics of textile composites: Micro-geometry , 2008 .

[53]  W. F. Ranson,et al.  Applications of digital-image-correlation techniques to experimental mechanics , 1985 .

[54]  I. Sinclair,et al.  Ultra High Resolution Computed Tomography of Damage in Notched Carbon Fiber—Epoxy Composites , 2008 .

[55]  R. De Borst,et al.  Transverse Failure Behavior of Fiber-epoxy Systems , 2010 .

[56]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[57]  David B. Marshall,et al.  Integral Textile Ceramic Structures , 2008 .

[58]  Geoff E. Fair,et al.  Hi‐NicalonTM‐SSiC Fiber Oxidation and Scale Crystallization Kinetics , 2011 .

[59]  Somnath Ghosh,et al.  A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation , 2008 .

[60]  Z. Suo,et al.  Tunneling Cracks in Constrained Layers , 1993 .

[61]  Endel Iarve,et al.  Mesh‐independent matrix cracking and delamination modeling in laminated composites , 2011 .

[62]  B. N. Cox,et al.  A probabilistic model of short fatigue crack growth , 1987 .

[63]  W. Liu,et al.  An efficient augmented finite element method for arbitrary cracking and crack interaction in solids , 2014 .

[64]  J. L. Bogdanoff,et al.  A New Cumulative Damage Model—Part 4 , 1980 .

[65]  Chokri Cherif,et al.  Experimental and computational composite textile reinforcement forming: A review , 2013 .

[66]  B. N. Cox,et al.  The Macroscopic Elasticity of 3D Woven Composites , 1995 .

[67]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[68]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[69]  J. Kinney,et al.  Pore geometry in woven fiber structures: 0°/90° plain-weave cloth layup preform , 1998 .

[70]  R. Borst,et al.  COMPUTATIONAL ASPECTS OF COHESIVE – ZONE MODELS , 2004 .

[71]  Brian N. Cox,et al.  Interfacial sliding near a free surface in a fibrous or layered composite during thermal cycling , 1990 .

[72]  Kwansoo Chung,et al.  Constitutive modeling of woven composites considering asymmetric/anisotropic, rate dependent, and nonlinear behavior , 2007 .

[73]  A. Needleman An analysis of decohesion along an imperfect interface , 1990 .

[74]  N. Fleck,et al.  Compressive Failure of Fibre Composites Due to Microbuckling , 1991 .

[75]  Andrew C. Long,et al.  Effects of fibre architecture on reinforcement fabric deformation , 2002 .

[76]  Stefanie Feih,et al.  Adhesive and composite failure prediction of single-L joint structures under tensile loading , 2004 .

[77]  B. Cox,et al.  Deformation Mechanisms of Dry Textile Preforms under Mixed Compressive and Shear Loading , 2004 .

[78]  Jianguo Lin,et al.  Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation , 2011 .

[79]  Wei Liu,et al.  Elastic behavior analysis of 3D angle-interlock woven ceramic composites , 2006 .

[80]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[81]  B. Cox,et al.  Predicting failure in textile composites using the Binary Model with gauge-averaging , 2010 .

[82]  Wei Chen,et al.  Computational microstructure characterization and reconstruction for stochastic multiscale material design , 2013, Comput. Aided Des..

[83]  Stephen R Hallett,et al.  Characterisation of 3D woven composite internal architecture and effect of compaction , 2010 .

[84]  Raj N. Singh,et al.  Effect of Fiber Bridging Stress on the Fracture Resistance of Silicon‐Carbide‐Fiber/Zircon Composites , 2004 .

[85]  Nick J. McCormick,et al.  Digital Image Correlation , 2010 .

[86]  A. Evans,et al.  Treating matrix nonlinearity in the binary model formulation for 3D ceramic composite structures , 2010 .

[87]  A. Ullah,et al.  On the sampling of three‐dimensional polycrystalline microstructures for distribution determination , 2011, Journal of microscopy.

[88]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[89]  George Spanos,et al.  3D Crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning , 2006 .

[90]  Zhenhai Xia,et al.  Electrical Resistance as a Nondestructive Evaluation Technique for SiC/SiC Ceramic Matrix Composites Under Creep‐Rupture Loading , 2011 .

[91]  Brian Lawn,et al.  Fracture of brittle solids: Atomic aspects of fracture , 1993 .

[92]  L. Sluys,et al.  Continuum Models for the Analysis of Progressive Failure in Composite Laminates , 2009 .

[93]  H. Shercliff,et al.  Direct observation of the fracture of CAS-Glass/SiC composites , 1994, Journal of Materials Science.

[94]  Hamouda Ghonem,et al.  Probabilistic description of fatigue crack growth in polycrystalline solids , 1985 .

[95]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[96]  Bernard Budiansky,et al.  Mechanics of materials and material characterizationMicromechanics , 1983 .

[97]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[98]  J. Shaw,et al.  An elastic–plastic constitutive model for ceramic composite laminates , 2014 .

[99]  Jacob Fish,et al.  Two-scale damage modeling of brittle composites , 2001 .

[100]  R. Ritchie,et al.  Real-Time Quantitative Imaging of Failure Events in Materials under Load at Temperatures above 1700°C , 2012 .

[101]  J. Shaw,et al.  Towards Virtual Testing of Textile Composites: Calibration of Thermoelastic Tow Properties , 2014 .

[102]  Kazimierz Sobczyk,et al.  Modelling of random fatigue crack growth , 1986 .

[103]  X. J. Fang,et al.  An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials , 2011 .

[104]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[105]  G. Morscher,et al.  Design Guidelines for In‐Plane Mechanical Properties of SiC Fiber‐Reinforced Melt‐Infiltrated SiC Composites , 2009 .

[106]  Qingda Yang,et al.  In Quest of Virtual Tests for Structural Composites , 2006, Science.

[107]  M. D. Thouless,et al.  Mixed-mode fracture analyses of plastically-deforming adhesive joints , 2001 .

[108]  R. T. DeHoff,et al.  Quantitative serial sectioning analysis: preview , 1983 .

[109]  Andrew Drach,et al.  Processing of fiber architecture data for finite element modeling of 3D woven composites , 2014, Adv. Eng. Softw..

[110]  Ignace Verpoest,et al.  Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions , 2011 .

[111]  F. Zok,et al.  High-temperature materials testing with full-field strain measurement: experimental design and practice. , 2011, The Review of scientific instruments.

[112]  J. Ahmad,et al.  Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms , 2008 .

[113]  Gregory N. Morscher,et al.  Stress-Dependent Matrix Cracking in 2D Woven Sic-Fiber Reinforced Melt-Infiltrated Sic Matrix Composites , 2013 .

[114]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[115]  Anne S. Kiremidjian,et al.  Stochastic modeling of fatigue crack growth , 1988 .

[116]  Brian N. Cox,et al.  Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations , 2012 .

[117]  P. Boisse,et al.  Simulation and tomography analyzis of textile composite reinforcement deformation at the mesoscopic scale , 2019 .

[118]  M. Zako,et al.  Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling , 2003 .

[119]  X. J. Fang,et al.  High-fidelity simulations of multiple fracture processes in a laminated composite in tension , 2011 .

[120]  R. Ritchie,et al.  Real-time Quantitative Imaging of Failure Events in Materials under Load at Temperatures above 1,600 , 2012 .

[121]  D. Dimiduk,et al.  3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM , 2006 .

[122]  Gregory N. Morscher,et al.  Modal acoustic emission of damage accumulation in a woven SiC/SiC composite , 1999 .

[123]  Ivo Babuška,et al.  Generalized finite element methods for three-dimensional structural mechanics problems , 2000 .

[124]  Brian N. Cox,et al.  Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the binary model , 2012 .

[125]  J. DiCarlo,et al.  Through‐Thickness Properties of 2D Woven SiC/SiC Panels with Various Microstructures , 2008 .

[126]  D. Mollenhauer,et al.  Theoretical and experimental investigation of stress redistribution in open hole composite laminates due to damage accumulation , 2005 .

[127]  Ignace Verpoest,et al.  Meso-FE modelling of textile composites: Road map, data flow and algorithms , 2007 .

[128]  Brian N. Cox,et al.  Transverse strengths and failure mechanisms in Ti3Al matrix composites , 1994 .

[129]  Y. K. Lin,et al.  A stochastic theory of fatigue crack propagation , 1985 .

[130]  A. Bogdanovich,et al.  Applications of a meso-volume-based analysis for textile composite structures , 1993 .

[131]  Norman A. Fleck,et al.  A binary model of textile composites—I. Formulation , 1994 .

[132]  B. N. Cox,et al.  On the tensile failure of 3D woven composites , 1996 .

[133]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[134]  J. L. Bogdanoff,et al.  Application of Physical Laws to Parameter Estimation for Probabilistic Models of Cumulative Damage , 1990 .

[135]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[136]  Markus J. Buehler,et al.  Large-Scale Hierarchical Molecular Modeling of Nanostructured Biological Materials , 2006 .

[137]  Frans P. van der Meer,et al.  Mesolevel Modeling of Failure in Composite Laminates: Constitutive, Kinematic and Algorithmic Aspects , 2012 .

[138]  Jacques Lamon,et al.  A micromechanics-based approach to the mechanical behavior of brittle-matrix composites , 2001 .

[139]  Hong Qian,et al.  Statistics and Related Topics in Single-Molecule Biophysics. , 2014, Annual review of statistics and its application.

[140]  F. Kozin,et al.  On Nonstationary Cumulative Damage Models , 1982 .

[141]  Philippe Boisse,et al.  Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level , 2005 .

[142]  S. A. Grishanov,et al.  A Topological Study of Textile Structures. Part I: An Introduction to Topological Methods , 2009 .

[143]  W. Curtin In Situ Fiber Strengths in Ceramic‐Matrix Composites from Fracture Mirrors , 1994 .

[144]  H. Sakamoto,et al.  Silicon Carbide Monofilament‐Reinforced Silicon Nitride or Silicon Carbide Matrix Composites , 1989 .

[145]  L. N. McCartney,et al.  Mechanics of matrix cracking in brittle-matrix fibre-reinforced composites , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[146]  S. Mark Spearing,et al.  Practical Challenges in Formulating Virtual Tests for Structural Composites , 2008 .

[147]  Tsu-Wei Chou,et al.  Fiber Inclination Model of Three-Dimensional Textile Structural Composites , 1986 .

[148]  Daosheng Ling,et al.  An augmented finite element method for modeling arbitrary discontinuities in composite materials , 2009 .

[149]  Brian N. Cox,et al.  Mechanisms of compressive failure in 3D composites , 1992 .

[150]  M. Rappaz,et al.  In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys , 2009 .

[151]  Gregory N. Morscher,et al.  Effects of Fiber Architecture on Matrix Cracking for Melt‐Infiltrated SiC/SiC Composites , 2009 .

[152]  M. Ashby,et al.  Delamination, fibre bridging and toughness of ceramic matrix composites , 1993 .

[153]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[154]  David Abend Fatigue Damage Crack Growth And Life Prediction , 2016 .

[155]  A. Evans,et al.  MECHANICAL-PROPERTIES OF CONTINUOUS-FIBER-REINFORCED CARBON MATRIX COMPOSITES AND RELATIONSHIPS TO CONSTITUENT PROPERTIES , 1992 .

[156]  J. Lankford THE INFLUENCE OF MICROSTRUCTURE ON THE GROWTH OF SMALL FATIGUE CRACKS , 1985 .

[157]  J. D. Clark,et al.  Ultimate Tensile Stress over a Zone: A New Failure Criterion for Adhesive Joints , 1993 .

[158]  Gilles Hivet,et al.  Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis , 2005 .

[159]  Alberto Carpinteri,et al.  Bridged versus cohesive crack in the flexural behavior of brittle-matrix composites , 1996 .

[160]  Anne Sakdinawat,et al.  Nanoscale X-ray Imaging , 2009 .

[161]  Brian N. Cox,et al.  Compression-compression fatigue of 3D woven composites , 1995 .

[162]  Zhigang Suo,et al.  Remarks on Crack-Bridging Concepts , 1992 .

[163]  Steven M. Arnold,et al.  Progressive Failure of a Unidirectional Fiber-reinforced Composite Using the Method of Cells: Discretization Objective Computational Results , 2013 .

[164]  R. Raj,et al.  The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273 K , 2005 .

[165]  William A. Curtin,et al.  Stochastic Damage Evolution and Failure in Fiber-Reinforced Composites , 1998 .

[166]  Christian Germain,et al.  Microstructure reconstruction of fibrous C/C composites from X-ray microtomography , 2007 .

[167]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[168]  A. B. Geltmacher,et al.  Image-based modeling of the response of experimental 3D microstructures to mechanical loading , 2006 .

[169]  M. F. Ashby,et al.  Physical modelling of materials problems , 1992 .

[170]  A. Evans,et al.  Stress Corrosion Cracking in a Unidirectional Ceramic‐Matrix Composite , 1994 .

[171]  A. Evans,et al.  The mechanics of matrix cracking in brittle-matrix fiber composites , 1985 .

[172]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[173]  Christopher M. Pastore,et al.  Mechanics of Textile and Laminated Composites: With applications to structural analysis , 1996 .

[174]  Subra Suresh,et al.  Deformation of metal-matrix composites with continuous fibers: geometrical effects of fiber distribution and shape , 1991 .

[175]  Brian N. Cox,et al.  Evaluation of Macroscopic and Local Strains in a Three-Dimensional Woven C/SiC Composite , 2005 .

[176]  M. S. Dadkhah,et al.  Effect of Weave Architecture on Tensile Properties and Local Strain Heterogeneity in Thin‐Sheet C–SiC Composites , 2002 .

[177]  Zhaofeng Geng,et al.  A Model of Rigid Bodies for Plain-Weave Fabrics Based on the Dynamics of Multibody Systems , 2010 .

[178]  Ignace Verpoest,et al.  Compression of Woven Reinforcements: A Mathematical Model , 2000 .

[179]  Zhenhai Xia,et al.  Monitoring damage accumulation in ceramic matrix composites using electrical resistivity , 2008 .

[180]  A. J. Moffat,et al.  Micromechanisms of damage in 0° splits in a [90/0]s composite material using synchrotron radiation computed tomography , 2008 .

[181]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[182]  J. Lamon,et al.  Virtual testing applied to transverse multiple cracking of tows in woven ceramic composites , 2011 .

[183]  B. N. Cox,et al.  Monte Carlo simulations of the growth of small fatigue cracks , 1988 .

[184]  Songde Ma,et al.  Sequential synthesis of natural textures , 1985, Comput. Vis. Graph. Image Process..

[185]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[186]  M. C. Nichols,et al.  X-Ray Tomographic Microscopy (XTM) Using Synchrotron Radiation , 1992 .

[187]  G. Morscher,et al.  Matrix Cracking in 3D Orthogonal Melt-Infiltrated Sic/Sic Composites with Various Z-Fiber Types , 2013 .

[188]  M. Begley,et al.  In‐Plane Fracture Resistance of a Crossply Fibrous Monolith , 2004 .

[189]  Frank Ko,et al.  Preform fiber architecture for ceramic-matrix composites , 1989 .

[190]  S. A. Grishanov,et al.  A Topological Study of Textile Structures. Part II: Topological Invariants in Application to Textile Structures , 2009 .

[191]  Brian N. Cox,et al.  Characterizing Three‐Dimensional Textile Ceramic Composites Using Synchrotron X‐Ray Micro‐Computed‐Tomography , 2012 .

[192]  Béla Julesz,et al.  Visual Pattern Discrimination , 1962, IRE Trans. Inf. Theory.

[193]  J. L. Bogdanoff A New Cumulative Damage Model: Part 1 , 1978 .

[194]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[195]  Asd Wang,et al.  Matrix crack initiation in ceramic matrix composites Part II: Models and simulation results , 1992 .

[196]  Ronald A. Howard,et al.  Dynamic Probabilistic Systems , 1971 .

[197]  Masashi Yamada,et al.  A knitting pattern recognition and stitch symbol generating system for knit designing , 1995 .

[198]  Olivia Coindreau,et al.  Direct 3D microscale imaging of carbon–carbon composites with computed holotomography , 2003 .

[199]  A. Rollett,et al.  3D reconstruction of microstructure in a commercial purity aluminum , 2006 .

[200]  Ignace Verpoest,et al.  Micro-CT characterization of variability in 3D textile architecture , 2005 .

[201]  G. Vendroux,et al.  Submicron deformation field measurements: Part 2. Improved digital image correlation , 1998 .

[202]  H. Schneider,et al.  Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties , 2000 .

[203]  W. Morris,et al.  Fatigue Mechanisms in Graphite/SiC Composites at Room and High Temperature , 1994 .

[204]  H. P. Rossmanith AN INTRODUCTION TO K. WIEGHARDT'S HISTORICAL PAPER “ON SPLITTING AND CRACKING OF ELASTIC BODIES” , 1995 .

[205]  N. Limnios,et al.  Semi-Markov Processes and Reliability , 2012 .

[206]  B. N. Cox,et al.  Inductions from Monte Carlo simulations of small fatigue cracks , 1989 .

[207]  J. Aveston,et al.  Single and Multiple Fracture , 1971 .

[208]  P. Charalambides,et al.  Delamination resistance of two hybrid ceramic-composite laminates , 2005 .

[209]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[210]  B. Cox,et al.  Spatially Averaged Local Strains in Textile Composites Via the Binary Model Formulation , 2003 .

[211]  Bhushan Lal Karihaloo,et al.  Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM , 2007 .