Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars
暂无分享,去创建一个
[1] M. Mellon,et al. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .
[2] P. Christensen,et al. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .
[3] A. Kahle. Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .
[4] P. Mouginis-Mark. Prodigious ash deposits near the summit of Arsia Mons volcano, Mars , 2002 .
[5] P. Christensen,et al. Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .
[6] K. Edgett,et al. THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .
[7] R. A. Vaughan,et al. Remote sensing applications in meteorology and climatology , 1987 .
[8] D. Crown,et al. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars , 2017 .
[9] M. Malin,et al. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra , 2002 .
[10] K. Sieh,et al. Range front faulting and volcanism in the Mono Basin, eastern California , 1989 .
[11] Nicholas Lancaster,et al. Volcaniclastic aeolian dunes: terrestrial examples and application to martian sands , 1993 .
[12] J. Plescia. Morphometric properties of Martian volcanoes , 2004 .
[13] Devin L. Galloway,et al. Response plan for volcano hazards in the Long Valley Caldera and Mono Craters Region, California , 2002 .
[14] J. Aubele,et al. Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars , 1978 .
[15] Robert K. Vincent,et al. The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes , 1968 .
[16] J. C. Price. Thermal inertia mapping: A new view of the Earth , 1977 .
[17] Yong Xue,et al. Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model , 2007 .
[18] R. Greeley,et al. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province , 2007 .
[19] P. Christensen,et al. Compositional heterogeneity of the ancient Martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data , 2005 .
[20] J. C. Price. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia , 1985 .
[21] A. Rosema,et al. Meteosat-based evapotranspiration and thermal inertia mapping for monitoring transgression in the Lake Chad region and Niger Delta† , 1990 .
[22] Yasushi Yamaguchi,et al. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..
[23] M. Mellon,et al. Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .
[24] M. Mellon,et al. The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .
[25] Jeffrey R. Johnson,et al. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .
[26] W. Hildreth. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems , 2004 .
[27] S. Wood. Chronology of Late Pleistocene and Holocene Volcanics, Long Valley and Mono Basin Geothermal Areas, Eastern California , 1983 .
[28] A. P. Cracknell,et al. Estimation of ground heat flux using AVHRR data and an advanced thermal inertia model (SoA-TI model) , 1996 .
[29] R. J. Gurney,et al. Discrimination of Soil Physical Parameters, Thermal Inertia, and Soil Moisture from Diurnal Surface Temperature Fluctuations , 1985 .
[30] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[31] M. Mellon,et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .
[32] Michael S. Ramsey,et al. Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data , 2010 .
[33] D. Crown,et al. Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions , 1998 .
[34] Joshua L. Bandfield,et al. Effects of surface roughness and graybody emissivity on martian thermal infrared spectra , 2009 .
[35] J. Mustard,et al. Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .
[36] W. Feldman,et al. Martian high latitude permafrost depth and surface cover thermal inertia distributions , 2008 .
[37] Terry Z. Martin,et al. Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .
[38] Raymond E. Arvidson,et al. Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .
[39] D. H. Scott,et al. Geologic map of Arsia Mons Volcano, Mars , 1995 .
[40] M. Shinoda,et al. A STUDY ON SOIL MOISTURE ESTIMATION USING THERMAL INERTIA , 2011 .
[41] K. Sieh,et al. Most recent eruption of the Mono Craters, eastern central California , 1986 .
[42] M. Ramsey,et al. Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy , 2010 .
[43] J. Fink,et al. Origin of pumiceous and glassy textures in rhyolite flows and domes , 1987 .
[44] I. C. Russell. Quaternary history of Mono Valley, California , 1984 .
[45] M. Malin,et al. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .
[46] José A. Sobrino,et al. Combining afternoon and morning NOAA satellites for thermal inertia estimation: 2. Methodology and application , 1999 .
[47] H. McSween,et al. Tharsis-sourced relatively dust-free lavas and their possible relationship to Martian meteorites , 2009 .
[48] J. Bandfield,et al. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets , 2003 .
[49] Stephen P. Scheidt,et al. Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data , 2011 .
[50] R. Fergason,et al. Global distribution of bedrock exposures on Mars using THEMIS high‐resolution thermal inertia , 2009 .
[51] José A. Sobrino,et al. Combining afternoon and morning NOAA satellites for thermal inertia estimation. 1. Algorithm and its testing with Hydrologic Atmospheric Pilot Experiment-Sahel data , 1999 .
[52] Harry Y. McSween,et al. Identification of quartzofeldspathic materials on Mars , 2004 .
[53] P. Christensen,et al. High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .
[54] S. Ruff,et al. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .
[55] K. Moffett,et al. Remote Sens , 2015 .
[56] M. Abrams. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .
[57] R. A. Bailey,et al. Quaternary Volcanism of Long Valley Caldera and Mono-Inyo Craters, Eastern California Long Valley Caldera, California July 20–27, 1989 , 1989 .
[58] Lawrence C. Rowan,et al. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .
[59] F. Palluconi,et al. Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .
[60] Ronald Greeley,et al. The Snake River Plain, Idaho: Representative of a new category of volcanism , 1982 .
[61] M. Ramsey,et al. Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .
[62] J. Aubele,et al. Calderas on Mars: characteristics, structure, and associated flank deformation , 1996, Geological Society, London, Special Publications.
[63] Jeffrey Edward Moersch,et al. Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features , 2009 .