Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

Orbital thermal infrared (TIR) remote sensing is an important tool for characterizing geologic surfaces on Earth and Mars. However, deposition of material from volcanic or eolian activity results in bedrock surfaces becoming significantly mantled over time, hindering the accuracy of TIR compositional analysis. Moreover, interplay between particle size, albedo, composition and surface roughness add complexity to these interpretations. Apparent Thermal Inertia (ATI) is the measure of the resistance to temperature change and has been used to determine parameters such as grain/block size, density/mantling, and the presence of subsurface soil moisture/ice. Our objective is to document the quantitative relationship between ATI derived from orbital visible/near infrared (VNIR) and thermal infrared (TIR) data and tephra fall mantling of the Mono Craters and Domes (MCD) in California, which were chosen as an analog for partially mantled flows observed at Arsia Mons volcano on Mars. The ATI data were created from two images collected ~12 h apart by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument. The results were validated with a quantitative framework developed using fieldwork that was conducted at 13 pre-chosen sites. These sites ranged in grain size from ash-sized to meter-scale blocks and were all rhyolitic in composition. Block size and mantling were directly correlated with ATI. Areas with ATI under 2.3 × 10−2 were well-mantled with average grain size below 4 cm; whereas values greater than 3.0 × 10−2 corresponded to mantle-free surfaces. Correlation was less accurate where checkerboard-style mixing between mantled and non-mantled surfaces occurred below the pixel scale as well as in locations where strong shadowing occurred. However, the results validate that the approach is viable for a large majority of mantled surfaces on Earth and Mars. This is relevant for determining the volcanic history of Mars, for example. Accurate identification of non-mantled lava surfaces within an apparently well-mantled flow field on either planet provides locations to extract important mineralogical constraints on the individual flows using TIR data.

[1]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[2]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[3]  A. Kahle Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .

[4]  P. Mouginis-Mark Prodigious ash deposits near the summit of Arsia Mons volcano, Mars , 2002 .

[5]  P. Christensen,et al.  Martian dust mantling and surface composition: Interpretation of thermophysical properties , 1982 .

[6]  K. Edgett,et al.  THE PARTICLE SIZE OF MARTIAN AEOLIAN DUNES , 1991 .

[7]  R. A. Vaughan,et al.  Remote sensing applications in meteorology and climatology , 1987 .

[8]  D. Crown,et al.  Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars , 2017 .

[9]  M. Malin,et al.  Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra , 2002 .

[10]  K. Sieh,et al.  Range front faulting and volcanism in the Mono Basin, eastern California , 1989 .

[11]  Nicholas Lancaster,et al.  Volcaniclastic aeolian dunes: terrestrial examples and application to martian sands , 1993 .

[12]  J. Plescia Morphometric properties of Martian volcanoes , 2004 .

[13]  Devin L. Galloway,et al.  Response plan for volcano hazards in the Long Valley Caldera and Mono Craters Region, California , 2002 .

[14]  J. Aubele,et al.  Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars , 1978 .

[15]  Robert K. Vincent,et al.  The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes , 1968 .

[16]  J. C. Price Thermal inertia mapping: A new view of the Earth , 1977 .

[17]  Yong Xue,et al.  Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model , 2007 .

[18]  R. Greeley,et al.  Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province , 2007 .

[19]  P. Christensen,et al.  Compositional heterogeneity of the ancient Martian crust: Analysis of Ares Vallis bedrock with THEMIS and TES data , 2005 .

[20]  J. C. Price On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia , 1985 .

[21]  A. Rosema,et al.  Meteosat-based evapotranspiration and thermal inertia mapping for monitoring transgression in the Lake Chad region and Niger Delta† , 1990 .

[22]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[23]  M. Mellon,et al.  Apparent thermal inertia and the surface heterogeneity of Mars , 2007 .

[24]  M. Mellon,et al.  The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[25]  Jeffrey R. Johnson,et al.  Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .

[26]  W. Hildreth Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems , 2004 .

[27]  S. Wood Chronology of Late Pleistocene and Holocene Volcanics, Long Valley and Mono Basin Geothermal Areas, Eastern California , 1983 .

[28]  A. P. Cracknell,et al.  Estimation of ground heat flux using AVHRR data and an advanced thermal inertia model (SoA-TI model) , 1996 .

[29]  R. J. Gurney,et al.  Discrimination of Soil Physical Parameters, Thermal Inertia, and Soil Moisture from Diurnal Surface Temperature Fluctuations , 1985 .

[30]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[31]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[32]  Michael S. Ramsey,et al.  Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data , 2010 .

[33]  D. Crown,et al.  Block size distributions on silicic lava flow surfaces: Implications for emplacement conditions , 1998 .

[34]  Joshua L. Bandfield,et al.  Effects of surface roughness and graybody emissivity on martian thermal infrared spectra , 2009 .

[35]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[36]  W. Feldman,et al.  Martian high latitude permafrost depth and surface cover thermal inertia distributions , 2008 .

[37]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[38]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[39]  D. H. Scott,et al.  Geologic map of Arsia Mons Volcano, Mars , 1995 .

[40]  M. Shinoda,et al.  A STUDY ON SOIL MOISTURE ESTIMATION USING THERMAL INERTIA , 2011 .

[41]  K. Sieh,et al.  Most recent eruption of the Mono Craters, eastern central California , 1986 .

[42]  M. Ramsey,et al.  Spectral analysis of synthetic quartzofeldspathic glasses using laboratory thermal infrared spectroscopy , 2010 .

[43]  J. Fink,et al.  Origin of pumiceous and glassy textures in rhyolite flows and domes , 1987 .

[44]  I. C. Russell Quaternary history of Mono Valley, California , 1984 .

[45]  M. Malin,et al.  Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission , 2001 .

[46]  José A. Sobrino,et al.  Combining afternoon and morning NOAA satellites for thermal inertia estimation: 2. Methodology and application , 1999 .

[47]  H. McSween,et al.  Tharsis-sourced relatively dust-free lavas and their possible relationship to Martian meteorites , 2009 .

[48]  J. Bandfield,et al.  Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets , 2003 .

[49]  Stephen P. Scheidt,et al.  Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data , 2011 .

[50]  R. Fergason,et al.  Global distribution of bedrock exposures on Mars using THEMIS high‐resolution thermal inertia , 2009 .

[51]  José A. Sobrino,et al.  Combining afternoon and morning NOAA satellites for thermal inertia estimation. 1. Algorithm and its testing with Hydrologic Atmospheric Pilot Experiment-Sahel data , 1999 .

[52]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[53]  P. Christensen,et al.  High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications , 2006 .

[54]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[55]  K. Moffett,et al.  Remote Sens , 2015 .

[56]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[57]  R. A. Bailey,et al.  Quaternary Volcanism of Long Valley Caldera and Mono-Inyo Craters, Eastern California Long Valley Caldera, California July 20–27, 1989 , 1989 .

[58]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[59]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[60]  Ronald Greeley,et al.  The Snake River Plain, Idaho: Representative of a new category of volcanism , 1982 .

[61]  M. Ramsey,et al.  Estimating silicic lava vesicularity with thermal remote sensing: a new technique for volcanic mapping and monitoring , 1999 .

[62]  J. Aubele,et al.  Calderas on Mars: characteristics, structure, and associated flank deformation , 1996, Geological Society, London, Special Publications.

[63]  Jeffrey Edward Moersch,et al.  Thermal imaging of alluvial fans: A new technique for remote classification of sedimentary features , 2009 .