Dinucleoside polyphosphates act as 5′-RNA caps in bacteria

[1]  M. Scheffner,et al.  Formation of the Alarmones Diadenosine Triphosphate and Tetraphosphate by Ubiquitin- and Ubiquitin-like-Activating Enzymes. , 2019, Cell chemical biology.

[2]  J. Belasco,et al.  Stresses that Raise Np4A Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. , 2019, Molecular cell.

[3]  Ruslan Shupanov,et al.  Micellar polymerization: Computer simulations by dissipative particle dynamics , 2018, J. Comput. Chem..

[4]  H. Dai,et al.  Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. , 2018, Journal of the American Chemical Society.

[5]  Abbas Amini,et al.  Twin Defect Derived Growth of Atomically Thin MoS2 Dendrites. , 2017, ACS nano.

[6]  Deanne M. Taylor,et al.  “CapZyme-Seq” comprehensively defines promoter-sequence determinants for RNA 5’ capping with NAD+ , 2017, bioRxiv.

[7]  M. Ziółek,et al.  Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. , 2017, Chemical reviews.

[8]  A. Serganov,et al.  A Novel RNA Phosphorylation State Enables 5' End-Dependent Degradation in Escherichia coli. , 2017, Molecular cell.

[9]  Dan S. Tawfik,et al.  Diadenosine tetraphosphate (Ap4A) – an E. coli alarmone or a damage metabolite? , 2017, The FEBS journal.

[10]  L. Tong,et al.  5′ End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding , 2017, Cell.

[11]  Olivier Elemento,et al.  Reversible methylation of m6Am in the 5′ cap controls mRNA stability , 2016, Nature.

[12]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[13]  H. Šanderová,et al.  Non-canonical transcription initiation: the expanding universe of transcription initiating substrates. , 2016, FEMS microbiology reviews.

[14]  Ewa M. Grudzien-Nogalska,et al.  New insights into decapping enzymes and selective mRNA decay , 2017, Wiley interdisciplinary reviews. RNA.

[15]  R. Parker,et al.  Identification of NAD+ capped mRNAs in Saccharomyces cerevisiae , 2016, Proceedings of the National Academy of Sciences.

[16]  J. Andrew McCammon,et al.  Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations , 2016, ACS central science.

[17]  Tingting Zou,et al.  Structural basis of prokaryotic NAD-RNA decapping by NudC , 2016, Cell Research.

[18]  D. Patel,et al.  Structure and function of the bacterial decapping enzyme NudC , 2016, Nature chemical biology.

[19]  Craig D. Kaplan,et al.  The mechanism of RNA 5′ capping with NAD+, NADH, and desphospho-CoA , 2016, Nature.

[20]  S. Mikhailov,et al.  Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives , 2015, Nucleosides, nucleotides & nucleic acids.

[21]  Hana Cahová,et al.  NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs , 2014, Nature.

[22]  J. Belasco,et al.  Specificity and Evolutionary Conservation of the Escherichia coli RNA Pyrophosphohydrolase RppH* , 2015, The Journal of Biological Chemistry.

[23]  K. Hokamp,et al.  An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. , 2013, Cell host & microbe.

[24]  A. McLennan Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? , 2013, Cellular and Molecular Life Sciences.

[25]  B. Potter,et al.  Aberrant Cyclization Affords a C-6 Modified Cyclic Adenosine 5′-Diphosphoribose Analogue with Biological Activity in Jurkat T Cells , 2012, Journal of medicinal chemistry.

[26]  M. Kiledjian,et al.  Multiple mRNA decapping enzymes in mammalian cells. , 2010, Molecular cell.

[27]  David R. Liu,et al.  LC/MS analysis of cellular RNA reveals NAD-linked RNA , 2009, Nature chemical biology.

[28]  David R. Liu,et al.  A chemical screen for biological small molecule–RNA conjugates reveals CoA-linked RNA , 2009, Proceedings of the National Academy of Sciences.

[29]  Scott Bailey,et al.  The Structure of a Transcribing T7 RNA Polymerase in Transition from Initiation to Elongation , 2008, Science.

[30]  H. Čelešnik,et al.  The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal , 2008, Nature.

[31]  A. McLennan,et al.  The Nudix hydrolase superfamily , 2005, Cellular and Molecular Life Sciences CMLS.

[32]  Kevin B. Turner,et al.  cADPR analogues: effect of an adenosine 2'- or 3'-methoxy group on conformation. , 2004, Organic letters.

[33]  R. Rhoads,et al.  Novel "anti-reverse" cap analogs with superior translational properties. , 2003, RNA.

[34]  F. Huang,et al.  Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription. , 2003, Nucleic acids research.

[35]  J. Swaminathan,et al.  The gene ygdP, associated with the invasiveness of Escherichia coli K1, designates a Nudix hydrolase, Orf176, active on adenosine (5')-pentaphospho-(5')-adenosine (Ap5A). , 2001, The Journal of biological chemistry.

[36]  A. McLennan Dinucleoside polyphosphates-friend or foe? , 2000, Pharmacology & therapeutics.

[37]  A. Guranowski Studies on dinucleoside polyphosphates: Some intriguing biochemical, physiological, and medical aspects , 2000 .

[38]  F. M. Hulett,et al.  PhoP~P and RNA polymerase σA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP~P activator sites within the coding region stimulate transcription in vitro , 1998, Molecular microbiology.

[39]  A. McLennan Ap4A and Other Dinucleoside Polyphosphates , 1992 .

[40]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[41]  F. Neidhardt,et al.  Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli , 1987, Journal of bacteriology.

[42]  E. Holler,et al.  Catabolism of diadenosine 5',5"'-P1,P4-tetraphosphate in procaryotes. Purification and properties of diadenosine 5',5"'-P1,P4-tetraphosphate (symmetrical) pyrophosphohydrolase from Escherichia coli K12. , 1983, The Journal of biological chemistry.

[43]  B. Ames,et al.  AppppA, heat-shock stress, and cell oxidation. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Suzanne Cory,et al.  Modified nucleosides and bizarre 5′-termini in mouse myeloma mRNA , 1975, Nature.

[45]  M. Stephenson,et al.  Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. , 1966, Biochemical and biophysical research communications.

[46]  Roland K. Robins,et al.  Purine Nucleosides. III. Methylation Studies of Certain Naturally Occurring Purine Nucleosides , 1963 .