The acoustics of the violin: a review

To understand the design and function of the violin requires investigation of a range of scientific questions. This paper presents a review: the relevant physics covers the nonlinear vibration of a bowed string, the vibration of the instrument body, and the consequent sound radiation. Questions of discrimination and preference by listeners and players require additional studies using the techniques of experimental psychology, and these are also touched on in the paper. To address the concerns of players and makers of instruments requires study of the interaction of all these factors, coming together in the concept of 'playability' of an instrument.

[1]  Colin E. Gough,et al.  The nonlinear free vibration of a damped elastic string , 1984 .

[2]  R. T. Schumacher,et al.  ON THE OSCILLATIONS OF MUSICAL-INSTRUMENTS , 1983 .

[3]  Schumacher,et al.  Reconstruction of bowing point friction force in a bowed string , 2000, The Journal of the Acoustical Society of America.

[4]  The violin bow: taper, camber and flexibility. , 2011, The Journal of the Acoustical Society of America.

[5]  Knut Guettler,et al.  Bows, Strings, and Bowing , 2010 .

[6]  Robin S. Langley,et al.  Sound radiation from point-driven shell structures , 2013 .

[7]  Robin S. Langley,et al.  Interpreting the input admittance of violins and guitars , 2012 .

[8]  C. Gough A violin shell model: vibrational modes and acoustics. , 2015, The Journal of the Acoustical Society of America.

[9]  Peter Hagedorn,et al.  On the Dynamics of Large Systems With Localized Nonlinearities , 1988 .

[10]  C. Hutchins,et al.  The Acoustics of Violin Plates , 1981 .

[11]  J. Dieterich Modeling of rock friction: 1. Experimental results and constitutive equations , 1979 .

[12]  Mark French,et al.  MECHANICS OF STRINGED INSTRUMENTS , 2001 .

[13]  Gabriel Weinreich,et al.  Directional tone color , 1997 .

[14]  Jürgen Meyer,et al.  Directivity of the Bowed Stringed Instruments and Its Effect on Orchestral Sound in Concert Halls , 1972 .

[15]  Michael Fleming,et al.  Research Papers in Violin Acoustics 1975-1993 , 1998 .

[16]  Michael F. Ashby,et al.  Materials for violin bows , 2007 .

[17]  Anders Askenfelt,et al.  Measurement of bow motion and bow force in violin playing , 1986 .

[18]  F. J. Fahy,et al.  A comparative study of the hammered bridge response and the bowed string response of a violin , 2009 .

[19]  Colin E Gough Violin bow vibrations. , 2012, The Journal of the Acoustical Society of America.

[20]  R. Langley,et al.  Sound radiation from point-excited structures: Comparison of plate and sphere , 2012 .

[21]  H. Backhaus,et al.  Über die Schwingungsformen von Geigenkörpern. II , 1931 .

[22]  Angelo Farina,et al.  Acoustic characterisation of “virtual” musical instruments: Using MLS technique on ancient violins* , 1998 .

[23]  R. Lyon,et al.  Theory and Application of Statistical Energy Analysis , 2014 .

[24]  Brian C J Moore,et al.  Perceptual studies of violin body damping and vibrato. , 2010, The Journal of the Acoustical Society of America.

[25]  Robert J. Bernhard,et al.  Variation of structural-acoustic characteristics of automotive vehicles , 1996 .

[26]  Jim Woodhouse,et al.  Plucked guitar transients: Comparison of measurements and synthesis (vol 90, pg 945, 2004) , 2004 .

[27]  Jacques Poitevineau,et al.  Player preferences among new and old violins , 2012, Proceedings of the National Academy of Sciences.

[28]  Jim Woodhouse,et al.  Mechanics of the contact area between a violin bow and a string; Part I: reflection and transmission behaviour , 1998 .

[29]  Vesa Välimäki Physics-Based Modeling of Musical Instruments , 2004 .

[30]  J. Poitevineau,et al.  Soloist evaluations of six Old Italian and six new violins , 2014, Proceedings of the National Academy of Sciences.

[31]  J. Woodhouse,et al.  Why is the violin so hard to play , 2004 .

[32]  Jim Woodhouse The acoustics of "A0-B0 mode matching" in the violin , 1998 .

[33]  J. C. Schelleng,et al.  The bowed string and the player , 1973 .

[34]  George Bissinger,et al.  Radiation damping, efficiency, and directivity for violin normal modes below 4 kHz , 2003 .

[35]  J. Woodhouse,et al.  Enhanced simulation of the bowed cello string , 2013 .

[36]  Gabriel Weinreich,et al.  Sound hole sum rule and the dipole moment of the violin , 1985 .

[37]  So,et al.  An excitation‐pattern model for intensity discrimination , 1981 .

[38]  R. Langley,et al.  An efficient model of drillstring dynamics , 2015 .

[39]  Jim Woodhouse,et al.  The tribology of rosin , 2000 .

[40]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[41]  J. Bretos,et al.  Vibrational patterns and frequency responses of the free plates and box of a violin obtained by finite element analysis , 1999 .

[42]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[43]  Marc Leman,et al.  Auditory perception of note transitions in simulated complex bowing patterns. , 2013, The Journal of the Acoustical Society of America.

[44]  Brian C J Moore,et al.  Exploring violin sound quality: investigating English timbre descriptors and correlating resynthesized acoustical modifications with perceptual properties. , 2012, The Journal of the Acoustical Society of America.

[45]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[46]  Irwin Pollack,et al.  Auditory informational masking , 1975 .

[47]  Vincent Cotoni,et al.  Numerical and experimental validation of variance prediction in the statistical energy analysis of built-up systems , 2005 .

[48]  Charles Besnainou,et al.  From Wood Mechanical Measurements to Composite Materials for Musical Instruments: New Technology for Instrument Makers , 1995 .

[49]  F. Fahy,et al.  Sound and Structural Vibration: Radiation, Transmission and Response , 1987 .

[50]  Paulo Sergio Varoto,et al.  Vibration Testing: Theory and Practice , 1995 .

[51]  Jim Woodhouse,et al.  The Acoustics of Stringed Musical Instruments , 1978 .

[52]  J Woodhouse,et al.  ON THE PLAYABILITY OF VIOLINS. II: MINIMUN BOW FORCE AND TRANSIENTS , 1993 .

[53]  Jim Woodhouse,et al.  On the "Bridge Hill" of the Violin , 2005 .

[54]  Frank Fahy,et al.  Sound and structural vibration: radiation, transmission and response: second edition , 1986 .

[55]  E. Rabinowicz The Nature of the Static and Kinetic Coefficients of Friction , 1951 .

[56]  C. D. Mote,et al.  Comments on curve veering in eigenvalue problems , 1986 .

[57]  F. Heslot,et al.  Creep, stick-slip, and dry-friction dynamics: Experiments and a heuristic model. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  George Anthony Knott A Modal Analysis of the Violin Using MSC/NASTRAN and PATRAN , 1987 .

[59]  J. Woodhouse,et al.  On the playability of violins. I: reflection functions , 1993 .

[61]  J. C. Schelleng Acoustical Effects of Violin Varnish , 1968 .

[62]  G. Bissinger Parametric plate-bridge dynamic filter model of violin radiativity. , 2012, The Journal of the Acoustical Society of America.

[63]  Matti Karjalainen,et al.  Acoustical analysis and model-based sound synthesis of the kantele. , 2002, The Journal of the Acoustical Society of America.

[64]  H. Saldner,et al.  Vibration modes of the violin forced via the bridge and action of the soundpost , 1996 .

[65]  P. Cobbold,et al.  Gum rosin (colophony): A suitable material for thermomechanical modelling of the lithosphere , 1992 .

[66]  Julius O. Smith,et al.  Digital modeling of bridge driving-point admittance from measurements on violin-family instruments , 2013 .

[67]  Cohn Gough,et al.  Science and the Stradivarius , 2000 .

[68]  J. Woodhouse,et al.  The influence of cell geometry on the elasticity of softwood , 1994 .

[69]  L. Cremer,et al.  Application of Holographic Interferometry to Vibrations of the Bodies of String Instruments , 1970 .

[70]  F. G. Friedlander On the oscillations of a bowed string , 1953 .

[71]  S. J. Elliott,et al.  Measurement of the torsional modes of vibration of strings on instruments of the violin family , 1989 .

[72]  Bruno L Giordano,et al.  Perceptual evaluation of violins: a quantitative analysis of preference judgments by experienced players. , 2012, The Journal of the Acoustical Society of America.

[73]  Xavier Boutillon,et al.  Analytical investigation of the flattening effect: The reactive power balance rule , 1991 .

[74]  N. Molin,et al.  Transient wave response of the violin body revisited , 1991 .

[75]  C. Waltham A balsa violin , 2009 .

[76]  James M. Anderson,et al.  Measurements of nonlinear effects in a driven vibrating wire , 1994 .

[77]  C. Gough Violin plate modes. , 2015, The Journal of the Acoustical Society of America.

[78]  J. Woodhouse,et al.  High-performance bowing machine tests of bowed-string transients , 2014 .

[79]  Jean-Pierre Dalmont,et al.  Static model of a violin bow: influence of camber and hair tension on mechanical behavior. , 2012, The Journal of the Acoustical Society of America.

[80]  H. Helmholtz,et al.  On the Sensations of Tone as a Physiological Basis for the Theory of Music , 2005 .

[81]  A. Askenfelt Measurement of the bowing parameters in violin playing. II: Bow–bridge distance, dynamic range, and limits of bow force , 1989 .

[82]  George Bissinger,et al.  Structural acoustics of good and bad violins. , 2008, The Journal of the Acoustical Society of America.

[83]  Harvey Fletcher,et al.  Quality of Violin Vibrato Tones , 1967 .

[84]  Andy J. Keane,et al.  Statistics of energy flows in spring-coupled one-dimensional subsystems , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[85]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[86]  R. Langley,et al.  Vibro-acoustic analysis of complex systems , 2005 .

[87]  Jim Woodhouse,et al.  On the fundamentals of bowed string dynamics , 1979 .

[88]  Xavier Boutillon,et al.  Three-dimensional mechanical admittance: Theory and new measurement method applied to the violin bridge , 1999 .

[89]  Robert T. Schumacher Analysis of aperiodicities in nearly periodic waveforms , 1992 .

[90]  Anders Askenfelt,et al.  Measuring Bow Force in Bowed String Performance: Theory and Implementation of a Bow Force Sensor , 2009 .

[91]  T. Butlin,et al.  An efficient model of drill-string dynamics with localised non-linearities , 2011 .

[92]  Carleen M. Hutchins,et al.  A history of violin research , 1983 .

[93]  Anders Askenfelt,et al.  An Empirical Investigation of Bow-Force Limits in the Schelleng Diagram , 2008 .

[94]  R. Clough,et al.  Dynamic analysis of large structural systems with local nonlinearities , 1979 .

[95]  Gang Sheng Friction-induced vibrations and sound : principles and applications , 2008 .

[96]  H. Yano,et al.  Improvement of the acoustic and hygroscopic properties of wood by a chemical treatment and application to the violin parts , 1992 .

[97]  Anders Askenfelt,et al.  Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks , 1997 .

[98]  Inga Josephine Dahl,et al.  History of the violin , 1898 .

[99]  W. Hill,et al.  Antonio Stradivari, His Life and Work (1644–1737) , 1963 .

[100]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[101]  J. Smitha,et al.  The tribology of rosin , 2022 .

[102]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[103]  L. Cremer,et al.  Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies , 1973 .

[104]  R. T. Schumacher,et al.  The transient behaviour of models of bowed-string motion. , 1995, Chaos.

[105]  V. Cotoni,et al.  Response variance prediction for uncertain vibro-acoustic systems using a hybrid deterministic-statistical method. , 2007, The Journal of the Acoustical Society of America.

[106]  E. Skudrzyk The mean-value method of predicting the dynamic response of complex vibrators , 1980 .

[107]  Erwin Schoonderwaldt,et al.  Extraction of bowing parameters from violin performance combining motion capture and sensors. , 2009, The Journal of the Acoustical Society of America.

[108]  C S Watson,et al.  Factors in the discrimination of tonal patterns. II. Selective attention and learning under various levels of stimulus uncertainty. , 1976, The Journal of the Acoustical Society of America.

[109]  Thomas D. Rossing,et al.  The Science of String Instruments , 2010 .

[110]  M. Mathews,et al.  Electronic simulation of violin resonances , 1973 .

[111]  Jim Woodhouse,et al.  Probing the Physics of Slip–Stick Friction using a Bowed String , 2005 .

[112]  Claire Y. Barlow,et al.  Materials selection for musical instruments , 1997 .

[113]  P. L. Ko,et al.  The Measurement of Friction and Friction-Induced Vibration , 1970 .

[114]  John F Nye,et al.  The kinetic friction of ice , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[115]  F. Schwarze,et al.  Superior wood for violins--wood decay fungi as a substitute for cold climate. , 2008, The New phytologist.

[116]  Jim Woodhouse,et al.  Body Vibration of the Violin— What Can a Maker Expect to Control? , 2002 .

[117]  K. D. Marshall,et al.  Modal analysis of a violin , 1985 .

[118]  D. J. Saunders Sound and sources of sound: A.P. Dowling and J.E. Ffowes Williams. Ellis Horwood, Chichester. 1983. 317 pp. Price: £22·50 (hardback), £8·50 (paperback) , 1984 .

[119]  Jim Woodhouse,et al.  Mechanics of the contact area between a violin bow and a string; Part II: simulating the bowed string , 1998 .

[120]  B. Moore An Introduction to the Psychology of Hearing , 1977 .

[121]  S. Sirr,et al.  CT analysis of bowed stringed instruments. , 1997, Radiology.

[122]  Lothar Cremer,et al.  The physics of the violin , 1984 .

[123]  Jim Woodhouse,et al.  Torsional Behaviour of Cello Strings , 1999 .

[124]  N. L. Owen,et al.  Wood used by Stradivari and Guarneri , 2006, Nature.

[125]  M. Kennedy,et al.  Telling tails , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Colin E. Gough,et al.  Measurement, modelling and synthesis of violin vibrato sounds , 2005 .

[127]  N. Molin,et al.  Resonances of a Violin Body Studied by Hologram Interferometry and Acoustical Methods , 1970 .

[128]  Knut Guettler,et al.  On the Creation of the Helmholtz Motion in Bowed Strings , 2002 .

[129]  P. M. Galluzzo,et al.  On the playability of stringed instruments , 2004 .

[130]  Julius O. Smith,et al.  Physical Modeling Using Digital Waveguides , 1992 .

[131]  N. Molin,et al.  Transient wave response of the violin body. , 1990, The Journal of the Acoustical Society of America.

[132]  Jim Woodhouse,et al.  Mechanics of the contact area between a violin bow and a string; Part III: parameter dependence , 1998 .

[133]  Jim Woodhouse,et al.  APERIODICITY IN BOWED-STRING MOTION , 1981 .

[134]  Brian C J Moore,et al.  Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin. , 2007, The Journal of the Acoustical Society of America.

[135]  Ulrike G K Wegst,et al.  Wood for sound. , 2006, American journal of botany.

[136]  Manfred Heckl,et al.  Measurements of Absorption Coefficients on Plates , 1961 .

[137]  A parametric study of the bowed string: the violinist's menagerie , 1984 .

[138]  J. Woodhouse,et al.  Perceptual Thresholds for Acoustical Guitar Models , 2012 .

[139]  Erwin Schoonderwaldt The Violinist's Sound Palette: Spectral Centroid, Pitch Flattening and Anomalous Low Frequencies , 2009 .

[140]  R. T. Schumacher,et al.  Measurements of some parameters of bowing , 1994 .

[141]  J. C. Schelleng,et al.  The Violin as a Circuit , 1963 .

[142]  G. Bissinger Modal analysis of a violin octet. , 2003, The Journal of the Acoustical Society of America.

[143]  C. Pierre Mode localization and eigenvalue loci veering phenomena in disordered structures , 1988 .

[144]  J. A. Torres,et al.  A simple method for synthesizing and producing guitar sounds , 2013 .

[145]  George Bissinger Structural acoustics model of the violin radiativity profile. , 2008, The Journal of the Acoustical Society of America.

[146]  Patrick Gaydecki The Foundations of Digital Signal Processing Using Signal Wizard Systems® , 2012 .

[147]  J. Woodhouse,et al.  REVIEW ARTICLE: Theories of noise and vibration transmission in complex structures , 1986 .

[148]  H. Helmholtz,et al.  Book Reviews: On the Sensations of Tone as a Physiological Basis for the Theory of Music , 1954 .

[149]  Stefania Serafin,et al.  An investigation of the impact of torsion waves and friction characteristics on the playability of virtual bowed strings , 1999, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452).

[150]  Jim Woodhouse,et al.  On the Synthesis of Guitar Plucks , 2004 .