Load capacity ratios for structures

Abstract For a given structure made of a perfectly plastic material with a yield stress s Y , we consider the load capacity ratio of the structure: the largest positive number C, depending only on the geometry of the structure, which satisfies the following property. For any loading distribution f on the structure whose maximum is f max , the structure will not undergo plastic collapse as long as f max ⩽ s Y C , independently of the distribution of the load. The paper presents the mathematical aspects, related mechanical notions, algorithms and examples corresponding to load capacity ratios of structures.

[1]  F. Tin-Loi,et al.  Collapse limit surface generation for multiparametric loading , 1992 .

[2]  William Prager,et al.  Introduction to Plasticity , 1960 .

[3]  PLASTIC ANALYSIS AND SYNTHESIS OF FRAMES SUBJECTED TO MULTIPLE LOADINGS , 1976 .

[4]  R. Segev Generalized Stress Concentration Factors , 2006 .

[5]  Jacov A. Kamenjarzh,et al.  Limit Analysis of Solids and Structures , 1996 .

[6]  Ross B. Corotis,et al.  Multiparametric Limit Analysis of Frames: Part II—Computations , 1988 .

[7]  Minimum-weight design of beams for multiple loading☆ , 1967 .

[8]  M. Życzkowski,et al.  Combined Loadings in the Theory of Plasticity , 1981 .

[9]  DILEEP MENON,et al.  AN INTRODUCTION TO FUNCTIONAL ANALYSIS , 2010 .

[10]  Roger Temam,et al.  Mathematical Problems in Plasticity , 1985 .

[11]  Constantin Zalinescu On the Maximization of (not necessarily) Convex Functions on Convex Sets , 2006, J. Glob. Optim..

[12]  P. Fuschi,et al.  Interaction Diagram of a Circular Bar in Torsion and Extension , 1995 .

[13]  Komei Fukuda,et al.  Double Description Method Revisited , 1995, Combinatorics and Computer Science.

[14]  Antonio Huerta,et al.  Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading , 2009 .

[15]  Gene H. Golub,et al.  Matrix computations , 1983 .

[16]  E. Giorgi,et al.  Quaderni di Matematica , 2010 .

[17]  M. De Handbuch der Physik , 1957 .

[18]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[19]  Michel Deza,et al.  Combinatorics and Computer Science , 1996, Lecture Notes in Computer Science.

[20]  L. Kachanov,et al.  Foundations Of The Theory Of Plasticity , 1971 .

[21]  Thomas H. Dawson,et al.  Problems in Plasticity , 1976 .

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Chris Martin,et al.  Upper bound limit analysis using discontinuous quadratic displacement fields , 2007 .

[24]  E. Christiansen Limit analysis of collapse states , 1996 .

[25]  George I. N. Rozvany,et al.  Structural Design via Optimality Criteria: The Prager Approach to Structural Optimization , 1989 .

[26]  János Lógó,et al.  Plastic behaviour and stability constraints in the shakedown analysis and optimal design of trusses , 2002 .

[27]  Lp-estimates for static stress fields , 1979 .

[28]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[29]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[30]  The ultimate load interaction surface , 1979 .

[31]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[32]  Reuven Segev Generalized Stress Concentration Factors for Equilibrated Forces and Stresses , 2004 .

[33]  Reuven Segev Load capacity of bodies , 2005 .

[34]  G. Saxcé,et al.  Plastic Limit Analysis of Plates, Shells and Disks , 2011 .

[35]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[36]  M. Z. Cohn,et al.  Engineering Plasticity by Mathematical Programming , 1981 .

[37]  E. Christiansen Computation of limit loads , 1981 .

[38]  Ross B. Corotis,et al.  Multiparametric Limit Analysis of Frames: Part I—Model , 1988 .

[39]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[40]  Edmund Christiansen,et al.  On the collapse solution in limit analysis , 1986 .