Effect of Cyclodextrin on the Pungent Taste of .ALPHA.-Lipoic Acid

α-リポ酸の辛味に対するCDの影響を調べるため,0.05% (w/v) α-リポ酸水溶液に糖質としてデキストリン,またはα-CD,β-CD,γ-CD,G2-β-CD®,イソエリート®Pを添加溶解した被験液の味を官能試験による辛味評価および電子味覚システムによる味強度の評価で検討した.電子味覚システムで得られたデータを,α-リポ酸の味強度,試料全体(α-リポ酸と糖質)の味強度として解析した. 官能評価によって,0.05% (w/v) α-リポ酸水溶液の辛味は1.5% (w/v)量のα-CDまたはγ-CDの添加で有意に抑制されることがわかった.電子味覚システムによるα-リポ酸の味強度の評価では,3.0% (w/v)量の糖添加によりα-CD>G2-β-CD®> β-CD>デキストリン> γ-CD>イソエリート®Pの順で有意にα-リポ酸の味が抑制された.また,試料全体(α-リポ酸と糖質)の味強度の評価では,3.0% (w/v)量の糖添加によりα-CD> γ-CD=イソエリート®Pの順で有意に試料全体の味が抑制された.一方で,試験時の被験液の性状は,α-CDおよびγ-CDを添加したα-リポ酸水溶液では包接沈殿を形成したが,α-CD添加ではCD添加量の増加に伴った水溶液中のα-リポ酸濃度の低下は見られなかったが,α-CD添加量の増加と共に電子味覚システムによる味強度は低下した. 以上のことから,α-リポ酸の辛味抑制はα-CDの添加で有意に効果が認められ,α-リポ酸とα-CDとの包接沈澱の形成と,水中におけるα-リポ酸とα-CDとの相互作用の二つの要因によりα-リポ酸の辛味が抑制されると考えられた.

[1]  Keiichi Motoyama,et al.  Reduction of bitterness of antihistaminic drugs by complexation with β-cyclodextrins. , 2011, Journal of pharmaceutical sciences.

[2]  Hideki Takahashi,et al.  The Aqueous Solubility and Thermal Stability of α-Lipoic Acid Are Enhanced by Cyclodextrin , 2011, Bioscience, biotechnology, and biochemistry.

[3]  P. Kleinebudde,et al.  Rational development of taste masked oral liquids guided by an electronic tongue. , 2010, International journal of pharmaceutics.

[4]  F. Hirayama,et al.  Enhancement of the aqueous solubility and masking the bitter taste of famotidine using drug/SBE-beta-CyD/povidone K30 complexation approach. , 2010, Journal of pharmaceutical sciences.

[5]  F. Hirayama,et al.  Evaluation of carboxymethyl-beta-cyclodextrin with acid function: improvement of chemical stability, oral bioavailability and bitter taste of famotidine. , 2010, International journal of pharmaceutics.

[6]  H. Nakayama,et al.  Inclusion complex of α-lipoic acid and modified cyclodextrins , 2010 .

[7]  R. Mashru,et al.  Formulation and Evaluation of Taste Masked Oral Reconstitutable Suspension of Primaquine Phosphate , 2008, AAPS PharmSciTech.

[8]  Ashok R. Patel,et al.  Preparation and Evaluation of Taste Masked Famotidine Formulation Using Drug/β-cyclodextrin/Polymer Ternary Complexation Approach , 2008, AAPS PharmSciTech.

[9]  S. Hirota,et al.  Masking mechanisms of bitter taste of drugs studied with ion selective electrodes. , 2006, Chemical & pharmaceutical bulletin.

[10]  L. Szente,et al.  Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  L. Packer,et al.  Antioxidant and prooxidant activities of alpha-lipoic acid and dihydrolipoic acid. , 2002, Toxicology and applied pharmacology.

[12]  L. Jicsinszky,et al.  Capillary Electrophoresis, ROESY NMR and Molecular Modelling Study of the Inclusion Complex β‐Cyclodextrin/Lipoic Acid , 2002 .

[13]  R. Mason,et al.  Sulfur-centered Radical Formation from the Antioxidant Dihydrolipoic Acid* , 2001, The Journal of Biological Chemistry.

[14]  L. Reed,et al.  A Trail of Research from Lipoic Acid to α-Keto Acid Dehydrogenase Complexes , 2001, The Journal of Biological Chemistry.

[15]  R. Kawaguchi,et al.  Ultraviolet spectroscopic estimation of microenvironments and bitter tastes of oxyphenonium bromide in cyclodextrin solutions. , 1999, Journal of pharmaceutical sciences.

[16]  L. Packer,et al.  alpha-Lipoic acid as a biological antioxidant. , 1995, Free radical biology & medicine.

[17]  S. Hizukuri,et al.  Some properties and the inclusion behavior of branched cyclodextrins. , 1988, Chemical & pharmaceutical bulletin.

[18]  D. B. Mccormick,et al.  High-performance liquid chromatography of lipoic acid and analogues , 1981 .

[19]  L. Reed,et al.  alpha-Keto acid dehydrogenation complexes. II. The role of protein-bound lipoic acid and flavin adenine dinucleotide. , 1960, The Journal of biological chemistry.