m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices

[1]  B. Simon,et al.  Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum , 1999 .

[2]  G. Teschl Trace Formulas and Inverse Spectral Theory for Jacobi Operators , 1998 .

[3]  H. Holden,et al.  Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies , 1997, solv-int/9705019.

[4]  N. Levinson,et al.  The Inverse Sturm-Liouville Problem , 1998 .

[5]  P. Yuditskii,et al.  Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and hardy spaces of character-automorphic functions , 1997 .

[6]  F. Gesztesy,et al.  New Classes of Toda Soliton Solutions , 1997 .

[7]  M. Väth Operators and applications , 1997 .

[8]  B. Simon,et al.  INVERSE SPECTRAL ANALYSIS WITH PARTIAL INFORMATION ON THE POTENTIAL, I. THE CASE OF AN A.C. COMPONENT IN THE SPECTRUM , 1997 .

[9]  G. Teschl,et al.  On isospectral sets of Jacobi operators , 1996 .

[10]  G. Teschl,et al.  Commutation Methods for Jacobi Operators , 1996 .

[11]  B. Simon,et al.  The xi function , 1996 .

[12]  B. Simon,et al.  Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators , 1996 .

[13]  G. M. L. Gladwell,et al.  On isospectral spring-mass systems , 1995 .

[14]  Barry Simon,et al.  Spectral analysis of rank one perturbations and applications , 1995 .

[15]  M. Krishna,et al.  Inverse spectral theory for Jacobi matrices and their almost periodicity , 1994, Proceedings / Indian Academy of Sciences.

[16]  H. Holden,et al.  ERRATA: TRACE FORMULAS AND CONSERVATION LAWS FOR NONLINEAR EVOLUTION EQUATIONS , 1994 .

[17]  T. Kappeler,et al.  Fibration of the phase space of the periodic toda lattice , 1993 .

[18]  P. Deift,et al.  Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .

[19]  M. Krishna,et al.  Almost periodicity of some Jacobi matrices , 1992, Proceedings / Indian Academy of Sciences.

[20]  D. Masson,et al.  Spectral theory of Jacobi matrices in l 2 ( Z ) and the su (1,1) lie algebra , 1991 .

[21]  Levitan,et al.  Sturm―Liouville and Dirac Operators , 1990 .

[22]  T. Ratiu,et al.  A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra , 1990 .

[23]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[24]  Michael Davis Some aspherical manifolds , 1987 .

[25]  G. Golub,et al.  A survey of matrix inverse eigenvalue problems , 1986 .

[26]  V. Marchenko Sturm-Liouville Operators and Applications , 1986 .

[27]  David Fried The cohomology of an isospectral flow , 1986 .

[28]  Carlos Tomei,et al.  The topology of isospectral manifolds of tridiagonal matrices , 1984 .

[29]  W. Gragg,et al.  The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .

[30]  Percy Deift,et al.  On the determination of a tridiagonal matrix from its spectrum and a submatrix , 1984 .

[31]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[32]  P. Deift,et al.  A Continuum Limit of Matrix Inverse Problems , 1981 .

[33]  H. Landau The classical moment problem: Hilbertian proofs , 1980 .

[34]  Warren E. Ferguson,et al.  The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .

[35]  H. Hochstadt On the construction of a Jacobi matrix from mixed given data , 1979 .

[36]  D. Mumford,et al.  The spectrum of difference operators and algebraic curves , 1979 .

[37]  H. Hochstadt,et al.  AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .

[38]  G. Guseinov Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function , 1978 .

[39]  J. Geronimo Scattering theory and orthogonal polynomials , 1978 .

[40]  P. Moerbeke,et al.  The spectrum of Jacobi matrices , 1976 .

[41]  Shunichi Tanaka,et al.  Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice , 1976 .

[42]  Ole H. Hald,et al.  Inverse eigenvalue problems for Jacobi matrices , 1976 .

[43]  伊達 悦朗,et al.  Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice (ソリトンの研究) , 1975 .

[44]  M. Kac,et al.  A complete solution of the periodic Toda problem. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  K. Case Orthogonal polynomials. II , 1975 .

[46]  Mark Kac,et al.  On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .

[47]  M. Kac,et al.  On some periodic toda lattices. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Case Orthogonal polynomials from the viewpoint of scattering theory , 1974 .

[49]  Harry Hochstadt,et al.  On the construction of a Jacobi matrix from spectral data , 1974 .

[50]  K. Case Scattering theory, orthogonal polynomials, and the transport equation , 1974 .

[51]  H. Hochstadt,et al.  Inverse theorems for Jacobi matrices , 1974 .

[52]  H. Flaschka On the Toda Lattice. II Inverse-Scattering Solution , 1974 .

[53]  K. M. Case The discrete inverse scattering problem in one dimension , 1974 .

[54]  K. Case,et al.  The discrete version of the Marchenko equations in the inverse scattering problem , 1973 .

[55]  K. M. Case,et al.  Inverse problem in transport theory. II , 1973 .

[56]  K. Case On discrete inverse scattering problems. II , 1973 .

[57]  M. Kac,et al.  A discrete version of the inverse scattering problem , 1973 .

[58]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[59]  B. M. Levitan On the determination of a Sturm-Liouville equation by two spectra , 1968 .

[60]  Harry Hochstadt,et al.  On some inverse problems in matrix theory , 1967 .

[61]  B. M. Levitan,et al.  Determination of a Differential Equation by Two of its Spectra , 1964 .

[62]  V. A. Marchenko,et al.  The Inverse Problem of Scattering Theory , 1963 .

[63]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[64]  Göran Borg Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .

[65]  G. Szegő Expansion problems associated with general orthogonal polynomials , 1939 .