m-Functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices
暂无分享,去创建一个
[1] B. Simon,et al. Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum , 1999 .
[2] G. Teschl. Trace Formulas and Inverse Spectral Theory for Jacobi Operators , 1998 .
[3] H. Holden,et al. Algebro-geometric quasi-periodic finite-gap solutions of the Toda and Kac-van Moerbeke hierarchies , 1997, solv-int/9705019.
[4] N. Levinson,et al. The Inverse Sturm-Liouville Problem , 1998 .
[5] P. Yuditskii,et al. Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and hardy spaces of character-automorphic functions , 1997 .
[6] F. Gesztesy,et al. New Classes of Toda Soliton Solutions , 1997 .
[7] M. Väth. Operators and applications , 1997 .
[8] B. Simon,et al. INVERSE SPECTRAL ANALYSIS WITH PARTIAL INFORMATION ON THE POTENTIAL, I. THE CASE OF AN A.C. COMPONENT IN THE SPECTRUM , 1997 .
[9] G. Teschl,et al. On isospectral sets of Jacobi operators , 1996 .
[10] G. Teschl,et al. Commutation Methods for Jacobi Operators , 1996 .
[11] B. Simon,et al. The xi function , 1996 .
[12] B. Simon,et al. Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators , 1996 .
[13] G. M. L. Gladwell,et al. On isospectral spring-mass systems , 1995 .
[14] Barry Simon,et al. Spectral analysis of rank one perturbations and applications , 1995 .
[15] M. Krishna,et al. Inverse spectral theory for Jacobi matrices and their almost periodicity , 1994, Proceedings / Indian Academy of Sciences.
[16] H. Holden,et al. ERRATA: TRACE FORMULAS AND CONSERVATION LAWS FOR NONLINEAR EVOLUTION EQUATIONS , 1994 .
[17] T. Kappeler,et al. Fibration of the phase space of the periodic toda lattice , 1993 .
[18] P. Deift,et al. Symplectic Aspects of Some Eigenvalue Algorithms , 1993 .
[19] M. Krishna,et al. Almost periodicity of some Jacobi matrices , 1992, Proceedings / Indian Academy of Sciences.
[20] D. Masson,et al. Spectral theory of Jacobi matrices in l 2 ( Z ) and the su (1,1) lie algebra , 1991 .
[21] Levitan,et al. Sturm―Liouville and Dirac Operators , 1990 .
[22] T. Ratiu,et al. A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra , 1990 .
[23] B. M. Levitan,et al. Inverse Sturm-Liouville Problems , 1987 .
[24] Michael Davis. Some aspherical manifolds , 1987 .
[25] G. Golub,et al. A survey of matrix inverse eigenvalue problems , 1986 .
[26] V. Marchenko. Sturm-Liouville Operators and Applications , 1986 .
[27] David Fried. The cohomology of an isospectral flow , 1986 .
[28] Carlos Tomei,et al. The topology of isospectral manifolds of tridiagonal matrices , 1984 .
[29] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[30] Percy Deift,et al. On the determination of a tridiagonal matrix from its spectrum and a submatrix , 1984 .
[31] Yu. A. Gur'yan,et al. Parts I and II , 1982 .
[32] P. Deift,et al. A Continuum Limit of Matrix Inverse Problems , 1981 .
[33] H. Landau. The classical moment problem: Hilbertian proofs , 1980 .
[34] Warren E. Ferguson,et al. The construction of Jacobi and periodic Jacobi matrices with prescribed spectra , 1980 .
[35] H. Hochstadt. On the construction of a Jacobi matrix from mixed given data , 1979 .
[36] D. Mumford,et al. The spectrum of difference operators and algebraic curves , 1979 .
[37] H. Hochstadt,et al. AN INVERSE STURM-LIOUVILLE PROBLEM WITH MIXED GIVEN DATA* , 1978 .
[38] G. Guseinov. Determination of an infinite non-self-adjoint Jacobi matrix from its generalized spectral function , 1978 .
[39] J. Geronimo. Scattering theory and orthogonal polynomials , 1978 .
[40] P. Moerbeke,et al. The spectrum of Jacobi matrices , 1976 .
[41] Shunichi Tanaka,et al. Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice , 1976 .
[42] Ole H. Hald,et al. Inverse eigenvalue problems for Jacobi matrices , 1976 .
[43] 伊達 悦朗,et al. Analogue of Inverse Scattering Theory for the Discrete Hill's Equation and Exact Solutions for the Periodic Toda Lattice (ソリトンの研究) , 1975 .
[44] M. Kac,et al. A complete solution of the periodic Toda problem. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[45] K. Case. Orthogonal polynomials. II , 1975 .
[46] Mark Kac,et al. On an Explicitly Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices , 1975 .
[47] M. Kac,et al. On some periodic toda lattices. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[48] K. Case. Orthogonal polynomials from the viewpoint of scattering theory , 1974 .
[49] Harry Hochstadt,et al. On the construction of a Jacobi matrix from spectral data , 1974 .
[50] K. Case. Scattering theory, orthogonal polynomials, and the transport equation , 1974 .
[51] H. Hochstadt,et al. Inverse theorems for Jacobi matrices , 1974 .
[52] H. Flaschka. On the Toda Lattice. II Inverse-Scattering Solution , 1974 .
[53] K. M. Case. The discrete inverse scattering problem in one dimension , 1974 .
[54] K. Case,et al. The discrete version of the Marchenko equations in the inverse scattering problem , 1973 .
[55] K. M. Case,et al. Inverse problem in transport theory. II , 1973 .
[56] K. Case. On discrete inverse scattering problems. II , 1973 .
[57] M. Kac,et al. A discrete version of the inverse scattering problem , 1973 .
[58] N. Akhiezer,et al. The Classical Moment Problem. , 1968 .
[59] B. M. Levitan. On the determination of a Sturm-Liouville equation by two spectra , 1968 .
[60] Harry Hochstadt,et al. On some inverse problems in matrix theory , 1967 .
[61] B. M. Levitan,et al. Determination of a Differential Equation by Two of its Spectra , 1964 .
[62] V. A. Marchenko,et al. The Inverse Problem of Scattering Theory , 1963 .
[63] I. Gel'fand,et al. On the determination of a differential equation from its spectral function , 1955 .
[64] Göran Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe , 1946 .
[65] G. Szegő. Expansion problems associated with general orthogonal polynomials , 1939 .