Effects of incidence angles and image combinations on mapping accuracy of surficial materials in the Umiujalik Lake area, Nunavut, using RADARSAT-2 polarimetric and LANDSAT-7 images, and DEM data. Part 1. Nonpolarimetric analysis

This study assesses the use of multibeam RADARSAT-2 multipolarized synthetic aperture radar images (hereafter termed “RADARSAT-2 images”), in combination with LANDSAT-7 Enhanced Thematic Mapper (ETM +) and digital elevation model (DEM) data for mapping surficial materials (bedrock, boulders, organic material, sand and gravel, thick till, and thin till) in Arctic Canada. In particular we tested the effects of RADARSAT-2 incidence angles on classification accuracy. This research contributes to the geoscience framework for mineral exploration in Archean to Paleoproterozoic rocks of the northeast Thelon region of Nunavut. The RADARSAT-2 images were acquired in three west-looking descending beam modes (FQ1, FQ12, and FQ20) with increasing respective incidence angles. A maximum likelihood classification (MLC) was applied to different combinations of RADARSAT-2 and LANDSAT-7 ETM+ images, and DEM data. The incidence angle effect on classification overall accuracies is greatest when only the HH polarized images are used, but is reduced when the HV and (or) VV polarized images are added to the classifier. The best MLC overall accuracy of 85.1% is achieved by combining all polarizations and all incidence angles (beam modes) with LANDSAT-7 ETM+ images and DEM data. The influences of variable environmental conditions (moisture and temperature) on mapping accuracy require further research.

[1]  E. C. Grunsky,et al.  A robust, cross-validation classification method (RCM) for improved mapping accuracy and confidence metrics , 2012 .

[2]  Brigitte Leblon,et al.  Surficial materials mapping in Nunavut, Canada with multibeam RADARSAT-2 dual-polarization C-HH and C-HV, LANDSAT-7 ETM+, and DEM data , 2012 .

[3]  J. Harris,et al.  Effects of incidence angles on mapping accuracy of surficial materials in the Umiujalik Lake area, Nunavut, using RADARSAT-2 polarimetric SAR images. Part 2. Polarimetric analysis , 2012 .

[4]  吕一旭 Yixu Lu 引言 (Introduction) , 2009, Provincial China.

[5]  S. Mei,et al.  Using multi-beam RADARSAT-1 imagery to augment mapping surficial geology in northwest Alberta, Canada , 2009 .

[6]  Pierre-Jean Alasset,et al.  Satellite Data Fusion Techniques for Terrain and Surficial Geological Mapping , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[7]  Thomas Schmid,et al.  Application of ALOS PALSAR and Landsat ETM+ Data for the Study of Periglacial Features and Permafrost within the South Shetland Islands, Western Antarctica , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[8]  E. Grunsky,et al.  The application of principal components analysis to multi-beam RADARSAT-1 satellite imagery: A tool for land cover and terrain mapping , 2002 .

[9]  V. Singhroy,et al.  Effects of Relief on the Selection of RADARSAT-1 Incidence Angle for Geological Applications , 1999 .

[10]  G. Schaber,et al.  The Importance of SAR Wavelength in Penetrating Blow Sand in Northern Arizona , 1999 .

[11]  Dan Johan Weydahl,et al.  Analysis of glaciers and geomorphology on Svalbard using multitemporal ERS-1 SAR images , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Dan G. Blumberg,et al.  Remote Sensing of Desert Dune Forms by Polarimetric Synthetic Aperture Radar (SAR) , 1998 .

[13]  D. Evans,et al.  Review article Synthetic aperture radar (SAR) frequency and polarization requirements for applications in ecology, geology, hydrology, and oceanography: A tabular status quo after SIR-C/X-SAR , 1997 .

[14]  John F. McCauley,et al.  The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt , 1997 .

[15]  Wang Chao,et al.  Use of multifrequency, multipolarization shuttle imaging radar for volcano mapping in the Kunlun Mountains of Western China☆ , 1997 .

[16]  T. Farr,et al.  Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China , 1996 .

[17]  B. Rivard,et al.  Use of SAR wavelength and polarization information for geological interpretation of semi-arid terrain , 1996 .

[18]  Dan G. Blumberg,et al.  Preliminary analysis of Shuttle Radar Laboratory (SRL-1) data to study aeolian features and processes , 1995, IEEE Trans. Geosci. Remote. Sens..

[19]  S. Tella Geology, Amer Lake (66H), Deep Rose Lake (66G) and parts of Pelly Lake (66F), District of Keewatin, Northwest Territories , 1994 .

[20]  F. Kenny,et al.  Radar Imagery for Quaternary Geological Mapping in Glaciated Terrains , 1992 .

[21]  D. F. Graham,et al.  Test of airborne, side-looking synthetic-aperture radar in central Newfoundland for geological reconnaissance , 1991 .

[22]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[23]  D. R. Grant,et al.  A test of airborne, side-looking synthetic-aperture radar in central Newfoundland for geological reconnaissance , 1991 .

[24]  Jan-Peter Muller,et al.  Digital Image Processing in Remote Sensing , 1988 .

[25]  Charles Elachi,et al.  Multifrequency and multipolarization radar scatterometry of sand dunes and comparison with spaceborne and airborne radar images , 1987 .

[26]  Tom Farr,et al.  Multipolarization Radar Images for Geologic Mapping and Vegetation Discrimination , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[27]  J. P. Ford,et al.  Mapping of Glacial Landforms from Seasat Radar Images , 1984, Quaternary Research.

[28]  T. Farr,et al.  Geologic interpretation from composited radar and Landsat imagery , 1979 .

[29]  Charles Elachi,et al.  Discrimination of geologic units in Death Valley using dual frequency and polarization imaging radar data , 1978 .

[30]  J. Goodman Some fundamental properties of speckle , 1976 .

[31]  L. Dellwig,et al.  The geological value of simultaneously produced like- and cross-polarized radar imagery. , 1966 .

[32]  J. Tyrrell The Glaciation of North Central Canada , 1898, The Journal of Geology.

[33]  R. Bell Geological Survey of Canada , 1885, Nature.

[34]  R. T. Hill Synthetic aperture radar (SAR) , 2014 .

[35]  J. A. Zinck,et al.  Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia. , 2010, Journal of environmental quality.

[36]  S. Pehrsson Basement to the Thelon Basin, Nunavut - Revisited , 2010 .

[37]  J. Harris,et al.  Case study 7. Classification of remotely sensed imagery for surficial geological mapping in Canada's North , 2008 .

[38]  J. Harris,et al.  Remote predictive mapping: an aid for northern mapping , 2008 .

[39]  Empirical Models for Canadian Unconformity-Associated Uranium Deposits , 2007 .

[40]  Eric C. Grunsky,et al.  Predictive mapping of surficial materials, Schultz Lake area (NTS 66A), Nunavut, Canada , 2006 .

[41]  L. Dredge,et al.  History of ice flow in the Schultz Lake and Wager Bay areas, Kivalliq region, Nunavut , 2005 .

[42]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[43]  F. Kenny,et al.  Application of airborne multispectral and radar images for Quaternary geological mapping , 1994 .

[44]  D. Grant,et al.  Airborne SAR for surficial geological mapping , 1994 .

[45]  V. K. Prest,et al.  Introduction : The Laurentide Ice Sheet and its Significance , 1987 .

[46]  R. D. Thomas,et al.  Surficial Geology, Amer Lake, District of Keewatin , 1981 .

[47]  Walter E. Brown,et al.  Variations in surface roughness within Death Valley, California: Geologic evaluation of 25-cm-wavelength radar images , 1976 .