A Family of Characteristic Discontinuous Galerkin Methods for Transient Advection-Diffusion Equations and Their Optimal-Order L^2 Error Estimates

We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations, including the characteristic NIPG, OBB, IIPG, and SIPG schemes. The derived schemes possess combined advantages of Eulerian- Lagrangian methods and discontinuous Galerkin methods. An optimal-order error estimate in the L 2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG, IIPG, and SIPG scheme. Numerical experi- ments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes com- pare favorably to the standard NIPG, OBB, IIPG, and SIPG schemes in the context of advection-diffusion equations. AMS subject classifications: 35R32, 37N30, 65M12, 76N15

[1]  T. F. Russell,et al.  Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics , 1984 .

[2]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[3]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[4]  Hong Wang,et al.  An ELLAM Scheme for Advection-Diffusion Equations in Two Dimensions , 1999, SIAM J. Sci. Comput..

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[7]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[8]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[9]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[10]  Shuyu Sun,et al.  Discontinuous Galerkin methods for reactive transport in porous media , 2003 .

[11]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[12]  Hong Wang,et al.  Second-order characteristic methods for advection-diffusion equations and comparison to other schemes , 1999 .

[13]  T. F. Russell,et al.  Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis , 1994 .

[14]  HONG WANG,et al.  Uniform Estimates for Eulerian-Lagrangian Methods for Singularly Perturbed Time-Dependent Problems , 2007, SIAM J. Numer. Anal..

[15]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[17]  Dong Liang,et al.  An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian-Lagrangian Localized Adjoint Method and Mixed Finite Element Methods , 2000, SIAM J. Sci. Comput..

[18]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[19]  Kaixin Wang,et al.  A UNIFORMLY OPTIMAL-ORDER ERROR ESTIMATE OF AN ELLAM SCHEME FOR UNSTEADY-STATE ADVECTION-DIFFUSION EQUATIONS , 2008 .

[20]  Mats G. Larson,et al.  Analysis of a family of discontinuous Galerkin methods for elliptic problems: the one dimensional case , 2004, Numerische Mathematik.

[21]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[22]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[23]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[24]  F. T.,et al.  Simulation of Miscible Displacement Using Mixed Methods and a Modified Method of Characteristics , 2022 .

[25]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[26]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[27]  Hong Wang,et al.  A characteristic method for porous medium flow , 2007, Int. J. Comput. Sci. Math..

[28]  Richard E. Ewing,et al.  An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems , 1996 .

[29]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .