Molecular dynamics simulation studies of liquid acetonitrile: New six‐site model

Molecular dynamics (MD) simulations are carried out for liquid acetonitrile using a new six‐site model for the solvent molecules. The recent force field of Cornell et al. ( J Am Chem Soc, 1995, 117, 5179) was used under the RESP approach to obtain the atomic charges. A new flexible all‐atom solvent model was achieved whose density, heat of vaporization, and isothermal compressibility values are in good agreement with available experimental data, especially for a generic force field. Radial distribution functions are calculated and discussed to study the liquid structure in detail. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 901–908, 2000

[1]  P. Kollman,et al.  Advancing beyond the atom‐centered model in additive and nonadditive molecular mechanics , 1997 .

[2]  Ian R. McDonald,et al.  An effective pair potential for liquid acetonitrile , 1983 .

[3]  J. Rivail,et al.  Molecular dynamics simulation of the TIPS model of 1,2-dichloroethane in the liquid phase , 1992 .

[4]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[5]  Peter A. Kollman,et al.  Solvation Free Energies of Amides and Amines: Disagreement between Free Energy Calculations and Experiment , 1995 .

[6]  P A Kollman,et al.  Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. , 1996, Journal of molecular biology.

[7]  William L. Jorgensen,et al.  Relative partition coefficients for organic solutes from fluid simulations , 1990 .

[8]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[9]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[10]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[11]  P. Kollman,et al.  Graphical visualization of mean hydration from molecular dynamics simulations. , 1997, Journal of Molecular Graphics and Modelling.

[12]  William L. Jorgensen,et al.  Convergence of Monte Carlo simulations of liquid water in the NPT ensemble , 1982 .

[13]  C. Jaime,et al.  Molecular Shuttles. A Computational Study (MM and MD) on the Translational Isomerism in Some [2]Rotaxanes , 1998 .

[14]  J. Coetzee Recommended methods for purification of solvents and tests for impurities , 1982 .

[15]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[16]  A. Laaksonen,et al.  Molecular dynamics simulation of liquid mixtures of acetonitrile and chloroform , 1990 .

[17]  Hans-Jörg Schneider,et al.  Mechanisms of Molecular Recognition : Investigations of Organic Host–Guest Complexes , 1991 .

[18]  Wallace S. Brey,et al.  Physical Chemistry and Its Biological Applications , 1978 .

[19]  P. Kollman,et al.  Structure and Properties of Neat Liquids Using Nonadditive Molecular Dynamics: Water, Methanol, and N-Methylacetamide , 1995 .

[20]  B. Ladanyi,et al.  Contributions of rotation and translation to polarizability anisotropy and solvation dynamics in acetonitrile , 1996 .

[21]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[22]  Wilfred F. van Gunsteren,et al.  A molecular dynamics simulation study of chloroform , 1994 .

[23]  William L. Jorgensen,et al.  Monte Carlo simulations of liquid acetonitrile with a three-site model , 1988 .

[24]  Peter A. Kollman,et al.  A molecular mechanical model that reproduces the relative energies for chair and twist‐boat conformations of 1,3‐dioxanes , 1995, J. Comput. Chem..

[25]  M. Maroncelli Computer simulations of solvation dynamics in acetonitrile , 1991 .

[26]  P. Kollman,et al.  Investigating the Anomalous Solvation Free Energies of Amines with a Polarizable Potential , 1996 .

[27]  Wilfred F. van Gunsteren,et al.  A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation , 1995 .

[28]  M. Månsson,et al.  Enthalpies of combustion and formation of acetonitrile , 1983 .

[29]  Donald F. Weaver,et al.  Critical Evaluation of Benzene Analytical Nonbonded Force Fields. Reparametrization of the MM3 Potential , 1995 .

[30]  L. Troxler,et al.  Conformation and Dynamics of 18-Crown-6, Cryptand 222, and Their Cation Complexes in Acetonitrile Studied by Molecular Dynamics Simulations , 1994 .

[31]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[32]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[33]  E. Cabaleiro-Lago,et al.  A POTENTIAL FUNCTION FOR INTERMOLECULAR INTERACTION IN THE ACETONITRILE DIMER CONSTRUCTED FROM AB INITIO DATA , 1997 .

[34]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[35]  Peter A. Kollman,et al.  Application of the RESP Methodology in the Parametrization of Organic Solvents , 1998 .

[36]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[37]  Ingemar Wadsö,et al.  Enthalpies of Vaporization of Organic Compounds. IV. Alkyl Nitriles. , 1970 .