Turning Smart Water Meter Data Into Useful Information : A case study on rental apartments in Södertälje

Managing water in urban areas is an ever increasingly complex challenge. Technology enables sustainable urban water management and with integrated smart metering solutions, massive amounts of water ...

[1]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[2]  R. Yin The abridged version of case study research: Design and method. , 1998 .

[3]  Leandros Tassiulas,et al.  Exploring Patterns in Water Consumption by Clustering , 2015 .

[4]  Yixing Shan,et al.  13th Computer Control for Water Industry Conference, CCWI 2015 Household Water Consumption: Insight from a Survey in Greece and Poland , 2015 .

[5]  Luis A. Hernández Gómez,et al.  Smart Cities at the Forefront of the Future Internet , 2011, Future Internet Assembly.

[6]  Rachel Cardell-Oliver,et al.  Smart Meter Analytics to Pinpoint Opportunities for Reducing Household Water Use , 2016 .

[7]  Vanessa Speight,et al.  Data driven analysis of customer flow meter data , 2015 .

[8]  Hector Malano,et al.  Seasonal Demand Dynamics of Residential Water End-Uses , 2015 .

[9]  Kevin Ashton,et al.  That ‘Internet of Things’ Thing , 1999 .

[10]  Rodney Anthony Stewart,et al.  Development of an intelligent model to categorise residential water end use events , 2013 .

[11]  R. Viertl On the Future of Data Analysis , 2002 .

[12]  Gerhard P. Hancke,et al.  The Role of Advanced Sensing in Smart Cities , 2012, Sensors.

[13]  Shuang-Hua Yang,et al.  A Benchmarking Model for Household Water Consumption Based on Adaptive Logic Networks , 2015 .

[14]  Ammar Rayes,et al.  The Internet of Things (IoT) , 2020, Energy and Analytics.

[15]  Rosa Maria Dangelico,et al.  Smart cities: definitions, dimensions, and performance , 2013 .

[16]  Zoran Kapelan,et al.  Effectiveness of Smart Meter-Based Consumption Feedback in Curbing Household Water Use: Knowns and Unknowns , 2016 .

[17]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[18]  Pierre Mukheibir,et al.  Urban water conservation through customised water and end-use information , 2016 .

[19]  Rodney Anthony Stewart,et al.  Smart meter enabled informatics for economically efficient diversified water supply infrastructure planning , 2016 .

[20]  Moti Nissani Ten cheers for interdisciplinarity: The case for interdisciplinary knowledge and research , 1997 .

[21]  Rodney Anthony Stewart,et al.  Identifying Residential Water End Uses Underpinning Peak Day and Peak Hour Demand , 2014 .

[22]  Lawrence A. Machi,et al.  The literature review : six steps to success , 2009 .

[23]  Kelly S. Fielding,et al.  An experimental test of voluntary strategies to promote urban water demand management. , 2013, Journal of environmental management.

[24]  Ewa Magiera,et al.  ISS-EWATUS Decision Support System - Overview of Achievements , 2017, KES-IDT.

[25]  Wendy Olsen,et al.  Data Collection: Key Debates and Methods in Social Research , 2011 .

[26]  V. C. Broto,et al.  Practising interdisciplinarity in the interplay between disciplines: experiences of established researchers , 2009 .

[27]  Jennifer E. Rowley,et al.  The wisdom hierarchy: representations of the DIKW hierarchy , 2007, J. Inf. Sci..

[28]  Lida Xu,et al.  The internet of things: a survey , 2014, Information Systems Frontiers.

[29]  Line Dubé,et al.  Rigor in Information Systems Positivist Case Research: Current Practices , 2003, MIS Q..

[30]  E. Brynjolfsson,et al.  The Rapid Adoption of Data-Driven Decision-Making , 2016 .

[31]  Ewa Magiera,et al.  Integrated Support System for Efficient Water Usage and Resources Management (ISS-EWATUS) , 2014 .

[32]  Wei Liu,et al.  An incremental algorithm for discovering routine behaviours from smart meter data , 2016, Knowl. Based Syst..

[33]  Pierre Mukheibir,et al.  Intelligent Metering for Urban Water: A Review , 2013 .

[34]  Andrea Castelletti,et al.  Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review , 2015, Environ. Model. Softw..

[35]  Sarah C. Darby,et al.  Smart metering: what potential for householder engagement? , 2010 .

[36]  Rodney Anthony Stewart,et al.  Smart metering: enabler for rapid and effective post meter leakage identification and water loss management , 2013 .

[37]  Tan Yigitcanlar,et al.  Smartness that matters: towards a comprehensive and human-centred characterisation of smart cities , 2016 .

[38]  Gareth R.T. White,et al.  Business Information Management: Improving Performance Using Information Systems , 2004 .

[39]  Rodney Anthony Stewart,et al.  Web-based knowledge management system: linking smart metering to the future of urban water planning , 2010 .

[40]  Dan Koo,et al.  Towards Sustainable Water Supply: Schematic Development of Big Data Collection Using Internet of Things (IoT) , 2015 .

[41]  Geoffrey W. McCarthy,et al.  On Being a Scientist: A Guide to Responsible Conduct in Research, 3rd ed. , 2012 .

[42]  R. Ackoff From Data to Wisdom , 2014 .

[43]  Michele Ann Mutchek,et al.  Moving Towards Sustainable and Resilient Smart Water Grids: Networked Sensing and Control Devices in the Urban Water System , 2014 .

[44]  Daniel Pacheco Lacerda,et al.  Design Science Research: A Method for Science and Technology Advancement , 2014 .

[45]  Jan Adamowski,et al.  Urban water demand forecasting and uncertainty assessment using ensemble wavelet‐bootstrap‐neural network models , 2013 .

[46]  Melanie Swan,et al.  Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0 , 2012, J. Sens. Actuator Networks.

[47]  Randy Frank Understanding Smart Sensors, Second Edition , 2000 .