Functional Reference Architecture for Corporate Master Data Management

Master Data Management (MDM) brings about two major challenges for companies: 1) Companies need to cope with the complexity of the subject, and 2) companies see themselves confronted with a wide range of IT products and solutions for MDM. Presenting a Functional Reference Architecture for Corporate Master Data Management, the present paper identifies and describes from a business perspective functional requirements MDM software should meet. The Functional Reference Architecture provides a basic terminology, a check list, and an assessment scheme for various application scenarios, like product evaluation, roadmap planning or exchange of information and experiences. Furthermore, MDM solutions of four software providers are examined with regard to their capability to meet the functions specified in the Functional Reference Architecture.

[1]  Andrea Back,et al.  The CC Model as Organizational Design Striving to Combine Relevance and Rigor , 2007 .

[2]  Israel Spiegler,et al.  Technology and knowledge: bridging a "generating" gap , 2003, Inf. Manag..

[3]  Peter Mertens,et al.  Grundzüge der Wirtschaftsinformatik , 1991 .

[4]  Hubert Österle,et al.  Geschäftsmodelle 2010 : Wie CEOs Unternehmen transformieren , 2006 .

[5]  David Marco,et al.  Building and Managing the Meta Data Repository: A Full Lifecycle Guide , 2000 .

[6]  André Bourdreau,et al.  Systems Integration and Knowledge Management , 1999, Inf. Syst. Manag..

[7]  Richard Y. Wang,et al.  Journey to Data Quality , 2006 .

[8]  Richard Y. Wang,et al.  Data quality assessment , 2002, CACM.

[9]  M. Boisot,et al.  Data, information and knowledge: have we got it right? , 2004 .

[10]  P. Mouncey Improving Data Warehouse and Business Information Quality , 2001 .

[11]  Guy Tozer,et al.  Metadata Management for Information Control and Business Success , 1999 .

[12]  Thomas H. Davenport,et al.  Book review:Working knowledge: How organizations manage what they know. Thomas H. Davenport and Laurence Prusak. Harvard Business School Press, 1998. $29.95US. ISBN 0‐87584‐655‐6 , 1998 .

[13]  Loren Heilig,et al.  SAP NetWeaver Master Data Management , 2007 .

[14]  Ivan M. Milman,et al.  Enterprise Master Data Management: An SOA Approach to Managing Core Information , 2008 .

[15]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[16]  Israel Spiegler,et al.  Knowledge Management: A New Idea Or a Recycled Concept? , 2000, Commun. Assoc. Inf. Syst..

[17]  R. Winter,et al.  Business Engineering: Auf dem Weg zum Unternehmen des Informationszeitalters , 2000 .

[18]  Thomas Redman,et al.  Data quality for the information age , 1996 .

[19]  Ilkka Tuomi,et al.  Data is more than knowledge: implications of the reversed knowledge hierarchy for knowledge management and organizational memory , 1999, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers.