On the Maximum Number of Cliques in a Graph

A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in a planar graph with n vertices is 8(n − 2).

[1]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[2]  Bruce E. Sagan,et al.  Maximal and maximum independent sets in graphs with at most r cycles , 2006, J. Graph Theory.

[3]  Endre Szemerédi,et al.  On complete subgraphs of r-chromatic graphs , 1975, Discret. Math..

[4]  Herbert S. Wilf,et al.  The number of maximal independent sets in a tree , 1986 .

[5]  David E. R. Sitton,et al.  MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS , 1996 .

[6]  Norbert Sauer A generalization of a theorem of Turán , 1971 .

[7]  B. Reed,et al.  Fast separation in a graph with an excluded minor , 2004 .

[8]  Daniel Olejár,et al.  On the order and the number of cliques in a random graph , 1997 .

[9]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[10]  J. Moon,et al.  On cliques in graphs , 1965 .

[11]  Frank Harary,et al.  On clique-extremal (p, q)-graphs , 1974, Networks.

[12]  Tobias Storch,et al.  How randomized search heuristics find maximum cliques in planar graphs , 2006, GECCO.

[13]  Zsolt Tuza,et al.  An upper bound on the number of cliques in a graph , 1993, Networks.

[14]  David Eppstein,et al.  Connectivity, graph minors, and subgraph multiplicity , 1993, J. Graph Theory.

[15]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[16]  K. Schürger Limit theorems for complete subgraphs of random graphs , 1979 .

[17]  Iwao Sato Clique graphs of packed graphs , 1986, Discret. Math..

[18]  Jürgen Eckhoff The maximum number of triangles in a K4-free graph , 1999, Discret. Math..

[19]  P. Erdös On cliques in graphs , 1966 .

[20]  L. Moser,et al.  AN EXTREMAL PROBLEM IN GRAPH THEORY , 2001 .

[21]  Steven Roman The maximum number of q-cliques in a graph with no p-clique , 1976, Discret. Math..

[22]  P. Erdös On an extremal problem in graph theory , 1970 .

[23]  Paul Wollan,et al.  Proper minor-closed families are small , 2006, J. Comb. Theory B.

[24]  B. Bollobás,et al.  Cliques in random graphs , 1976, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Jürgen Eckhoff,et al.  A new Tura'n-type theorem for cliques in graphs , 2004, Discret. Math..

[27]  J. Moon On the Number of Complete Subgraphs of a Graph , 1965, Canadian Mathematical Bulletin.

[28]  Bruce E. Sagan,et al.  Maximal independent sets in graphs with at most r cycles , 2006, J. Graph Theory.

[29]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[30]  David C. Fisher Lower bounds on the number of triangles in a graph , 1989, J. Graph Theory.

[31]  Bruce Hedman The maximum number of cliques in dense graphs , 1985, Discret. Math..

[32]  M. Simonovits,et al.  On the number of complete subgraphs of a graph II , 1983 .

[33]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[34]  Jennifer Ryan,et al.  Bounds on the number of complete subgraphs , 1992, Discret. Math..

[35]  Pál Erdös On the number of complete subgraphs and circuits contained in graphs , 1969 .

[36]  Michael Stiebitz On Hadwiger's number - a problem of the Nordhaus-Gaddum type , 1992, Discret. Math..

[37]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[38]  Mihalis Yannakakis,et al.  The Clique Problem for Planar Graphs , 1981, Inf. Process. Lett..

[39]  D. G. LARMANt On the number of complete subgraphs and circuits in a graph , 1969 .

[40]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..