The Necessity of Machine Learning and Epistemology in the Development of Categorization Theories: A Case Study in Prototype-Exemplar Debate

In the present paper we discuss some aspects of the development of categorization theories concerning cognitive psychology and machine learning. We consider the thirty-year debate between prototype-theory and exemplar-theory in the studies of cognitive psychology regarding the categorization processes. We propose this debate is ill-posed, because it neglects some theoretical and empirical results of machine learning about the bias-variance theorem and the existence of some instance-based classifiers which can embed models subsuming both prototype and exemplar theories. Moreover this debate lies on a epistemological error of pursuing a, so called, experimentum crucis . Then we present how an interdisciplinary approach, based on synthetic method for cognitive modelling, can be useful to progress both the fields of cognitive psychology and machine learning.

[1]  James C. Bezdek,et al.  Multiple-prototype classifier design , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[2]  A. Inkeles,et al.  International Encyclopedia of the Social Sciences. , 1968 .

[3]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[4]  J. D. Smith,et al.  Comparing prototype-based and exemplar-based accounts of category learning and attentional allocation. , 2002, Journal of experimental psychology. Learning, memory, and cognition.

[5]  G. Murphy,et al.  The Big Book of Concepts , 2002 .

[6]  K. McRae,et al.  Proceedings of the 30th Annual Conference of the Cognitive Science Society. , 2008 .

[7]  P. Husbands,et al.  The Mechanical Mind in History , 2008 .

[8]  Bart Ons,et al.  A varying abstraction model for categorization , 2005 .

[9]  Giacomo Patrizi,et al.  Formal methods in pattern recognition: A review , 2000, Eur. J. Oper. Res..

[10]  R. J. Henery,et al.  Methods Comparison: Assessing Agreement of Physiological Parameters Obtained From Exercise on Two Different Cycle Ergometers , 2013, Journal of strength and conditioning research.

[11]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[12]  E. Rosch Cognitive Representations of Semantic Categories. , 1975 .

[13]  R. Cordeschi Vecchi problemi filosofici per la nuova intelligenza artificiale , 2003 .

[14]  Roberto Cordeschi,et al.  The Discovery of the Artificial. Behavior, Mind and Machines Before and Beyond Cybernetics , 2010, Studies in Cognitive Systems.

[15]  A Gordon,et al.  Classification, 2nd Edition , 1999 .

[16]  B. Rogoff Apprenticeship in Thinking: Cognitive Development in Social Context , 1990 .

[17]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[18]  Tony R. Martinez,et al.  Reduction Techniques for Instance-Based Learning Algorithms , 2000, Machine Learning.

[19]  Categorization and Similarity Models , 2001 .

[20]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[21]  Cor J. Veenman,et al.  The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Safa R. Zaki,et al.  Prototype and exemplar accounts of category learning and attentional allocation: a reassessment. , 2003, Journal of experimental psychology. Learning, memory, and cognition.

[23]  Norman Kaplan,et al.  The Sociology of Science: Theoretical and Empirical Investigations , 1974 .

[24]  David G. Stork,et al.  Pattern Classification , 1973 .

[25]  R. Merton Social Theory and Social Structure , 1958 .

[26]  Peter Gärdenfors,et al.  Conceptual spaces - the geometry of thought , 2000 .

[27]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[28]  David W. Aha,et al.  Instance-Based Learning Algorithms , 1991, Machine Learning.

[29]  P. Thagard,et al.  Mind: Introduction to Cognitive Science , 1996 .

[30]  P. Thagard,et al.  Mind: Introduction to cognitive science, 2nd ed. , 2005 .

[31]  D L Medin,et al.  Concepts and conceptual structure. , 1989, The American psychologist.

[32]  Douglas L. Medin,et al.  Context theory of classification learning. , 1978 .

[33]  R. Cordeschi,et al.  The Discovery of the Artificial , 1899 .

[34]  John R. Anderson,et al.  The Adaptive Nature of Human Categorization. , 1991 .

[35]  Ian Witten,et al.  Data Mining , 2000 .

[36]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[37]  Phil Husbands,et al.  Steps Toward the Synthetic Method: Symbolic Information Processing and Self-Organizing Systems in Early Artificial Intelligence Modeling , 2008 .

[38]  Y. Rosseel Mixture models of categorization , 2002 .

[39]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[40]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.