Initial results from the MAVEN mission to Mars

The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars orbiter has been gathering information on the Mars upper atmosphere, ionosphere, and solar and solar wind interactions since its orbit insertion in September 2014. MAVEN's science goals are to understand processes driving the escape of atmospheric gases to space at the present epoch, and their variations with solar and local heliospheric conditions together with geographical and seasonal influences. This introduction and the accompanying articles provide a selection of key results obtained up to the time of writing, including measurements of the overall geometry and variability of the Martian magnetosphere, upper atmosphere, and ionosphere and their responses to interplanetary coronal mass ejections and solar energetic particle influxes. The ultimate goal is to use these results to determine the integrated loss to space through time and its role in overall Mars atmosphere evolution.

[1]  L. Paxton,et al.  Far Ultraviolet Remote Sensing of Venus and Mars , 2013 .

[2]  B. Jakosky,et al.  The first in situ electron temperature and density measurements of the Martian nightside ionosphere , 2015 .

[3]  M. Maggi,et al.  Mars Express and Venus Express multi-point observations of geoeffective solar flare events in December 2006 , 2008 .

[4]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[5]  S. Holy Mariner 6 and 7 Ultraviolet Spectrometer Experiment. Analysis of Hydrogen Lyman-Alpha Data , 1971 .

[6]  Stas Barabash,et al.  Martian Atmospheric Erosion Rates , 2007, Science.

[7]  D. Curtis,et al.  MAVEN observations of the response of Mars to an interplanetary coronal mass ejection , 2015, Science.

[8]  Bruce M. Jakosky,et al.  First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .

[9]  M. Allen,et al.  HDO in the Martian atmosphere: implications for the abundance of crustal water. , 1988, Icarus.

[10]  M. Lester,et al.  Pumping out the atmosphere of Mars through solar wind pressure pulses , 2010 .

[11]  J. Luhmann,et al.  Dayside pickup oxygen ion precipitation at Venus and Mars: Spatial distributions, energy deposition and consequences , 1991 .

[12]  B. Jakosky,et al.  MAVEN insights into oxygen pickup ions at Mars , 2015 .

[13]  Lin,et al.  The Solar Energetic Particle experiment on MAVEN: first results , 2015 .

[14]  B. Jakosky,et al.  MAVEN IUVS observation of the hot oxygen corona at Mars , 2015 .

[15]  C. Leovy Control of the homopause level , 1982 .

[16]  B. Jakosky,et al.  Multifluid MHD study of the solar wind interaction with Mars' upper atmosphere during the 2015 March 8th ICME event , 2015 .

[17]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[18]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[19]  D. Mitchell,et al.  Variability of the altitude of the Martian sheath , 2005 .

[20]  B. Jakosky,et al.  MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars , 2015 .

[21]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[22]  S. Barabash,et al.  On the relation between plasma escape and the Martian crustal magnetic field , 2011 .

[23]  Bruce M. Jakosky,et al.  Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel , 2015 .

[24]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[25]  Ronald J. Oliversen,et al.  First results of the MAVEN magnetic field investigation , 2015 .

[26]  B. Jakosky,et al.  Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring) , 2015 .

[27]  R. Schaa,et al.  A Sporadic Third Layer in the Ionosphere of Mars , 2005, Science.

[28]  William E. McClintock,et al.  Three‐dimensional structure in the Mars H corona revealed by IUVS on MAVEN , 2015 .

[29]  B. Jakosky,et al.  Discovery of diffuse aurora on Mars , 2015, Science.

[30]  F. Duru,et al.  Ion Energization and Escape on Mars and Venus , 2011 .

[31]  A. Hać,et al.  Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method , 2009 .

[32]  A. Nier,et al.  Composition and structure of Mars' Upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2 , 1977 .

[33]  Robert E. Johnson,et al.  Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .

[34]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[35]  J. Connerney,et al.  Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits , 2001 .

[36]  Gábor Tóth,et al.  MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations , 2015 .

[37]  Robert E. Johnson Plasma-induced sputtering of an atmosphere , 1994 .

[38]  Michael H. Carr,et al.  Water on Mars , 1987, Nature.

[39]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[40]  D. D. Zeeuw,et al.  Pickup oxygen ion velocity space and spatial distribution around Mars , 2008 .

[41]  B. Jakosky,et al.  MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars , 2015 .

[42]  B. Jakosky,et al.  Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation , 2015, Geophysical research letters.

[43]  R. Phillips,et al.  Mars' volatile and climate history , 2001, Nature.